A Multi-Granularity Retrieval Framework for Visually-Rich Documents
- URL: http://arxiv.org/abs/2505.01457v2
- Date: Tue, 06 May 2025 05:52:51 GMT
- Title: A Multi-Granularity Retrieval Framework for Visually-Rich Documents
- Authors: Mingjun Xu, Zehui Wang, Hengxing Cai, Renxin Zhong,
- Abstract summary: We propose a unified multi-granularity multimodal retrieval framework tailored for two benchmark tasks: MMDocIR and M2KR.<n>Our approach integrates hierarchical encoding strategies, modality-aware retrieval mechanisms, and vision-language model (VLM)-based candidate filtering.<n>Our framework demonstrates robust performance without the need for task-specific fine-tuning.
- Score: 4.804551482123172
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Retrieval-augmented generation (RAG) systems have predominantly focused on text-based retrieval, limiting their effectiveness in handling visually-rich documents that encompass text, images, tables, and charts. To bridge this gap, we propose a unified multi-granularity multimodal retrieval framework tailored for two benchmark tasks: MMDocIR and M2KR. Our approach integrates hierarchical encoding strategies, modality-aware retrieval mechanisms, and vision-language model (VLM)-based candidate filtering to effectively capture and utilize the complex interdependencies between textual and visual modalities. By leveraging off-the-shelf vision-language models and implementing a training-free hybrid retrieval strategy, our framework demonstrates robust performance without the need for task-specific fine-tuning. Experimental evaluations reveal that incorporating layout-aware search and VLM-based candidate verification significantly enhances retrieval accuracy, achieving a top performance score of 65.56. This work underscores the potential of scalable and reproducible solutions in advancing multimodal document retrieval systems.
Related papers
- MMSearch-R1: Incentivizing LMMs to Search [49.889749277236376]
We present MMSearch-R1, the first end-to-end reinforcement learning framework that enables on-demand, multi-turn search in real-world Internet environments.<n>Our framework integrates both image and text search tools, allowing the model to reason about when and how to invoke them guided by an outcome-based reward with a search penalty.
arXiv Detail & Related papers (2025-06-25T17:59:42Z) - Benchmarking Retrieval-Augmented Multimomal Generation for Document Question Answering [42.468210353582755]
Document Visual Question Answering (DocVQA) faces dual challenges in processing lengthy multimodal documents.<n>Current document retrieval-augmented generation (DocRAG) methods remain limited by their text-centric approaches.<n>We introduce MMDocRAG, a comprehensive benchmark featuring 4,055 expert-annotated QA pairs with multi-page, cross-modal evidence chains.
arXiv Detail & Related papers (2025-05-22T09:52:57Z) - QID: Efficient Query-Informed ViTs in Data-Scarce Regimes for OCR-free Visual Document Understanding [53.69841526266547]
Fine-tuning a pre-trained Vision-Language Model with new datasets often falls short in optimizing the vision encoder.<n>We introduce QID, a novel, streamlined, architecture-preserving approach that integrates query embeddings into the vision encoder.
arXiv Detail & Related papers (2025-04-03T18:47:16Z) - Recurrence-Enhanced Vision-and-Language Transformers for Robust Multimodal Document Retrieval [44.008094698200026]
Cross-modal retrieval is gaining increasing efficacy and interest from the research community.<n>In this paper, we design an approach that allows for multimodal queries composed of both an image and a text.<n>Our model, ReT, employs multi-level representations extracted from different layers of both visual and textual backbones.
arXiv Detail & Related papers (2025-03-03T19:01:17Z) - Benchmarking Retrieval-Augmented Generation in Multi-Modal Contexts [56.30364248231053]
This paper introduces Multi-Modal Retrieval-Augmented Generation (M2RAG)<n>M2RAG is a benchmark designed to evaluate the effectiveness of Multi-modal Large Language Models (MLLMs)<n>To enhance the context utilization capabilities of MLLMs, we also introduce Multi-Modal Retrieval-Augmented Instruction Tuning (MM-RAIT)
arXiv Detail & Related papers (2025-02-24T16:25:25Z) - Towards Text-Image Interleaved Retrieval [49.96332254241075]
We introduce the text-image interleaved retrieval (TIIR) task, where the query and document are interleaved text-image sequences.<n>We construct a TIIR benchmark based on naturally interleaved wikiHow tutorials, where a specific pipeline is designed to generate interleaved queries.<n>We propose a novel Matryoshka Multimodal Embedder (MME), which compresses the number of visual tokens at different granularity.
arXiv Detail & Related papers (2025-02-18T12:00:47Z) - VisDoM: Multi-Document QA with Visually Rich Elements Using Multimodal Retrieval-Augmented Generation [100.06122876025063]
This paper introduces VisDoMBench, the first comprehensive benchmark designed to evaluate QA systems in multi-document settings.<n>We propose VisDoMRAG, a novel multimodal Retrieval Augmented Generation (RAG) approach that simultaneously utilizes visual and textual RAG.
arXiv Detail & Related papers (2024-12-14T06:24:55Z) - LamRA: Large Multimodal Model as Your Advanced Retrieval Assistant [63.28378110792787]
We introduce LamRA, a versatile framework designed to empower Large Multimodal Models with sophisticated retrieval and reranking capabilities.<n>For retrieval, we adopt a two-stage training strategy comprising language-only pre-training and multimodal instruction tuning.<n>For reranking, we employ joint training for both pointwise and listwise reranking, offering two distinct ways to further boost the retrieval performance.
arXiv Detail & Related papers (2024-12-02T17:10:16Z) - Multi-modal Retrieval Augmented Multi-modal Generation: Datasets, Evaluation Metrics and Strong Baselines [64.61315565501681]
Multi-modal Retrieval Augmented Multi-modal Generation (M$2$RAG) is a novel task that enables foundation models to process multi-modal web content.<n>Despite its potential impact, M$2$RAG remains understudied, lacking comprehensive analysis and high-quality data resources.
arXiv Detail & Related papers (2024-11-25T13:20:19Z) - CUE-M: Contextual Understanding and Enhanced Search with Multimodal Large Language Model [9.224965304457708]
This paper introduces Contextual Understanding and Enhanced Search with MLLM (CUE-M), a novel multimodal search framework.<n>It incorporates image context enrichment, intent refinement, contextual query generation, external API integration, and relevance-based filtering.<n>Experiments on real-word datasets and public benchmarks on knowledge-based VQA and safety demonstrated that CUE-M outperforms baselines and establishes new state-of-the-art results.
arXiv Detail & Related papers (2024-11-19T07:16:48Z) - Beyond Text: Optimizing RAG with Multimodal Inputs for Industrial Applications [3.7636375810345744]
Large Language Models (LLMs) have demonstrated impressive capabilities in answering questions, but they lack domain-specific knowledge and are prone to hallucinations.
Retrieval Augmented Generation (RAG) is one approach to address these challenges, while multimodal models are emerging as promising AI assistants for processing both text and images.
We describe a series of experiments aimed at determining how to best integrate multimodal models into RAG systems for the industrial domain.
arXiv Detail & Related papers (2024-10-29T11:03:31Z) - Enhancing Interactive Image Retrieval With Query Rewriting Using Large Language Models and Vision Language Models [17.171715290673678]
We propose an interactive image retrieval system capable of refining queries based on user relevance feedback.
This system incorporates a vision language model (VLM) based image captioner to enhance the quality of text-based queries.
To evaluate our system, we curate a new dataset by adapting the MSR-VTT video retrieval dataset to the image retrieval task.
arXiv Detail & Related papers (2024-04-29T14:46:35Z) - Named Entity and Relation Extraction with Multi-Modal Retrieval [51.660650522630526]
Multi-modal named entity recognition (NER) and relation extraction (RE) aim to leverage relevant image information to improve the performance of NER and RE.
We propose a novel Multi-modal Retrieval based framework (MoRe)
MoRe contains a text retrieval module and an image-based retrieval module, which retrieve related knowledge of the input text and image in the knowledge corpus respectively.
arXiv Detail & Related papers (2022-12-03T13:11:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.