Enhancing Interactive Image Retrieval With Query Rewriting Using Large Language Models and Vision Language Models
- URL: http://arxiv.org/abs/2404.18746v1
- Date: Mon, 29 Apr 2024 14:46:35 GMT
- Title: Enhancing Interactive Image Retrieval With Query Rewriting Using Large Language Models and Vision Language Models
- Authors: Hongyi Zhu, Jia-Hong Huang, Stevan Rudinac, Evangelos Kanoulas,
- Abstract summary: We propose an interactive image retrieval system capable of refining queries based on user relevance feedback.
This system incorporates a vision language model (VLM) based image captioner to enhance the quality of text-based queries.
To evaluate our system, we curate a new dataset by adapting the MSR-VTT video retrieval dataset to the image retrieval task.
- Score: 17.171715290673678
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Image search stands as a pivotal task in multimedia and computer vision, finding applications across diverse domains, ranging from internet search to medical diagnostics. Conventional image search systems operate by accepting textual or visual queries, retrieving the top-relevant candidate results from the database. However, prevalent methods often rely on single-turn procedures, introducing potential inaccuracies and limited recall. These methods also face the challenges, such as vocabulary mismatch and the semantic gap, constraining their overall effectiveness. To address these issues, we propose an interactive image retrieval system capable of refining queries based on user relevance feedback in a multi-turn setting. This system incorporates a vision language model (VLM) based image captioner to enhance the quality of text-based queries, resulting in more informative queries with each iteration. Moreover, we introduce a large language model (LLM) based denoiser to refine text-based query expansions, mitigating inaccuracies in image descriptions generated by captioning models. To evaluate our system, we curate a new dataset by adapting the MSR-VTT video retrieval dataset to the image retrieval task, offering multiple relevant ground truth images for each query. Through comprehensive experiments, we validate the effectiveness of our proposed system against baseline methods, achieving state-of-the-art performance with a notable 10\% improvement in terms of recall. Our contributions encompass the development of an innovative interactive image retrieval system, the integration of an LLM-based denoiser, the curation of a meticulously designed evaluation dataset, and thorough experimental validation.
Related papers
- Rethinking Sparse Lexical Representations for Image Retrieval in the Age of Rising Multi-Modal Large Language Models [2.3301643766310374]
By utilizing multi-modal large language models (M-LLMs) that support visual prompting, we can extract image features and convert them into textual data.
We show the superior precision and recall performance of our image retrieval method compared to conventional vision-language model-based methods.
We also demonstrate that the retrieval performance can be improved by iteratively incorporating keywords into search queries.
arXiv Detail & Related papers (2024-08-29T06:54:03Z) - Unified Text-to-Image Generation and Retrieval [96.72318842152148]
We propose a unified framework in the context of Multimodal Large Language Models (MLLMs)
We first explore the intrinsic discrimi abilities of MLLMs and introduce a generative retrieval method to perform retrieval in a training-free manner.
We then unify generation and retrieval in an autoregressive generation way and propose an autonomous decision module to choose the best-matched one between generated and retrieved images.
arXiv Detail & Related papers (2024-06-09T15:00:28Z) - Interactive Text-to-Image Retrieval with Large Language Models: A Plug-and-Play Approach [33.231639257323536]
In this paper, we address the issue of dialogue-form context query within the interactive text-to-image retrieval task.
By reformulating the dialogue-form context, we eliminate the necessity of fine-tuning a retrieval model on existing visual dialogue data.
We construct the LLM questioner to generate non-redundant questions about the attributes of the target image.
arXiv Detail & Related papers (2024-06-05T16:09:01Z) - Enhancing Large Vision Language Models with Self-Training on Image Comprehension [99.9389737339175]
We introduce Self-Training on Image (STIC), which emphasizes a self-training approach specifically for image comprehension.
First, the model self-constructs a preference for image descriptions using unlabeled images.
To further self-improve reasoning on the extracted visual information, we let the model reuse a small portion of existing instruction-tuning data.
arXiv Detail & Related papers (2024-05-30T05:53:49Z) - FINEMATCH: Aspect-based Fine-grained Image and Text Mismatch Detection and Correction [66.98008357232428]
We propose FineMatch, a new aspect-based fine-grained text and image matching benchmark.
FineMatch focuses on text and image mismatch detection and correction.
We show that models trained on FineMatch demonstrate enhanced proficiency in detecting fine-grained text and image mismatches.
arXiv Detail & Related papers (2024-04-23T03:42:14Z) - Generative Cross-Modal Retrieval: Memorizing Images in Multimodal
Language Models for Retrieval and Beyond [99.73306923465424]
We introduce a generative cross-modal retrieval framework, which assigns unique identifier strings to represent images.
By memorizing images in MLLMs, we introduce a new paradigm to cross-modal retrieval, distinct from previous discriminative approaches.
arXiv Detail & Related papers (2024-02-16T16:31:46Z) - Progressive Learning for Image Retrieval with Hybrid-Modality Queries [48.79599320198615]
Image retrieval with hybrid-modality queries, also known as composing text and image for image retrieval (CTI-IR)
We decompose the CTI-IR task into a three-stage learning problem to progressively learn the complex knowledge for image retrieval with hybrid-modality queries.
Our proposed model significantly outperforms state-of-the-art methods in the mean of Recall@K by 24.9% and 9.5% on the Fashion-IQ and Shoes benchmark datasets respectively.
arXiv Detail & Related papers (2022-04-24T08:10:06Z) - Text-based Person Search in Full Images via Semantic-Driven Proposal
Generation [42.25611020956918]
We propose a new end-to-end learning framework which jointly optimize the pedestrian detection, identification and visual-semantic feature embedding tasks.
To take full advantage of the query text, the semantic features are leveraged to instruct the Region Proposal Network to pay more attention to the text-described proposals.
arXiv Detail & Related papers (2021-09-27T11:42:40Z) - Cross-Modal Retrieval Augmentation for Multi-Modal Classification [61.5253261560224]
We explore the use of unstructured external knowledge sources of images and their corresponding captions for improving visual question answering.
First, we train a novel alignment model for embedding images and captions in the same space, which achieves substantial improvement on image-caption retrieval.
Second, we show that retrieval-augmented multi-modal transformers using the trained alignment model improve results on VQA over strong baselines.
arXiv Detail & Related papers (2021-04-16T13:27:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.