CHORUS: Zero-shot Hierarchical Retrieval and Orchestration for Generating Linear Programming Code
- URL: http://arxiv.org/abs/2505.01485v1
- Date: Fri, 02 May 2025 16:36:57 GMT
- Title: CHORUS: Zero-shot Hierarchical Retrieval and Orchestration for Generating Linear Programming Code
- Authors: Tasnim Ahmed, Salimur Choudhury,
- Abstract summary: This study explores the efficiency of Large Language Models (LLMs) in generating solver-specific Linear Programming (LP) code.<n>We propose CHORUS, a retrieval-augmented generation framework for synthesizing Gurobi-based LP code from natural language problem statements.<n> Experiments on the NL4-Code benchmark show that CHORUS improves the performance of open-source LLMs by a significant margin compared to baseline and conventional RAG.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Linear Programming (LP) problems aim to find the optimal solution to an objective under constraints. These problems typically require domain knowledge, mathematical skills, and programming ability, presenting significant challenges for non-experts. This study explores the efficiency of Large Language Models (LLMs) in generating solver-specific LP code. We propose CHORUS, a retrieval-augmented generation (RAG) framework for synthesizing Gurobi-based LP code from natural language problem statements. CHORUS incorporates a hierarchical tree-like chunking strategy for theoretical contents and generates additional metadata based on code examples from documentation to facilitate self-contained, semantically coherent retrieval. Two-stage retrieval approach of CHORUS followed by cross-encoder reranking further ensures contextual relevance. Finally, expertly crafted prompt and structured parser with reasoning steps improve code generation performance significantly. Experiments on the NL4Opt-Code benchmark show that CHORUS improves the performance of open-source LLMs such as Llama3.1 (8B), Llama3.3 (70B), Phi4 (14B), Deepseek-r1 (32B), and Qwen2.5-coder (32B) by a significant margin compared to baseline and conventional RAG. It also allows these open-source LLMs to outperform or match the performance of much stronger baselines-GPT3.5 and GPT4 while requiring far fewer computational resources. Ablation studies further demonstrate the importance of expert prompting, hierarchical chunking, and structured reasoning.
Related papers
- Teaching LLM to Reason: Reinforcement Learning from Algorithmic Problems without Code [76.80306464249217]
We propose TeaR, which aims at teaching LLMs to reason better.<n>TeaR leverages careful data curation and reinforcement learning to guide models in discovering optimal reasoning paths through code-related tasks.<n>We conduct extensive experiments using two base models and three long-CoT distillation models, with model sizes ranging from 1.5 billion to 32 billion parameters, and across 17 benchmarks spanning Math, Knowledge, Code, and Logical Reasoning.
arXiv Detail & Related papers (2025-07-10T07:34:05Z) - Learning Efficient and Generalizable Graph Retriever for Knowledge-Graph Question Answering [75.12322966980003]
Large Language Models (LLMs) have shown strong inductive reasoning ability across various domains.<n>Most existing RAG pipelines rely on unstructured text, limiting interpretability and structured reasoning.<n>Recent studies have explored integrating knowledge graphs with LLMs for knowledge graph question answering.<n>We propose RAPL, a novel framework for efficient and effective graph retrieval in KGQA.
arXiv Detail & Related papers (2025-06-11T12:03:52Z) - A*-Decoding: Token-Efficient Inference Scaling [0.0]
Inference-time scaling has emerged as a powerful alternative to parameter scaling for improving language model performance.<n>We introduce A*-decoding, a search-based inference-time strategy that builds on the A* search algorithm to optimally utilize a fixed compute budget.<n>Our work demonstrates how thoughtful inference-time strategies can enhance reasoning in SLMs, pointing toward future advances in more efficient and scalable language model deployment.
arXiv Detail & Related papers (2025-05-19T19:19:48Z) - Is Compression Really Linear with Code Intelligence? [60.123628177110206]
textitFormat Annealing is a lightweight, transparent training methodology designed to assess the intrinsic capabilities of pre-trained models equitably.<n>Our empirical results reveal a fundamental logarithmic relationship between measured code intelligence and bits-per-character (BPC)<n>Our work provides a more nuanced understanding of compression's role in developing code intelligence and contributes a robust evaluation framework in the code domain.
arXiv Detail & Related papers (2025-05-16T16:59:14Z) - CoT-RAG: Integrating Chain of Thought and Retrieval-Augmented Generation to Enhance Reasoning in Large Language Models [14.784841713647682]
CoT-RAG is a novel reasoning framework with three key designs.<n>It features Knowledge Graph-driven CoT Generation, Learnable Knowledge Case-aware RAG, and Pseudo-Program Prompting Execution.<n>Compared with the-state-of-the-art methods, CoT-RAG exhibits a significant accuracy improvement, ranging from 4.0% to 23.0%.
arXiv Detail & Related papers (2025-04-18T07:55:09Z) - Guided Code Generation with LLMs: A Multi-Agent Framework for Complex Code Tasks [1.9198713957364215]
Large Language Models (LLMs) have shown remarkable capabilities in code generation tasks.<n>They face significant limitations in handling complex, long-context programming challenges.<n>This paper introduces a novel agentic framework for guided code generation''
arXiv Detail & Related papers (2025-01-11T19:21:53Z) - Chain-of-Programming (CoP) : Empowering Large Language Models for Geospatial Code Generation [2.6026969939746705]
This paper proposes a Chain of Programming framework to decompose the code generation process into five steps.
The framework incorporates a shared information pool, knowledge base retrieval, and user feedback mechanisms.
It significantly improves the logical clarity, syntactical correctness, and executability of the generated code.
arXiv Detail & Related papers (2024-11-16T09:20:35Z) - OpenCoder: The Open Cookbook for Top-Tier Code Large Language Models [76.59316249991657]
Large language models (LLMs) for code have become indispensable in various domains, including code generation, reasoning tasks and agent systems.<n>While open-access code LLMs are increasingly approaching the performance levels of proprietary models, high-quality code LLMs remain limited.<n>We introduce OpenCoder, a top-tier code LLM that not only achieves performance comparable to leading models but also serves as an "open cookbook" for the research community.
arXiv Detail & Related papers (2024-11-07T17:47:25Z) - CodeTree: Agent-guided Tree Search for Code Generation with Large Language Models [106.11371409170818]
Large language models (LLMs) can act as agents with capabilities to self-refine and improve generated code autonomously.
We propose CodeTree, a framework for LLM agents to efficiently explore the search space in different stages of the code generation process.
Specifically, we adopted a unified tree structure to explicitly explore different coding strategies, generate corresponding coding solutions, and subsequently refine the solutions.
arXiv Detail & Related papers (2024-11-07T00:09:54Z) - What's Wrong with Your Code Generated by Large Language Models? An Extensive Study [80.18342600996601]
Large language models (LLMs) produce code that is shorter yet more complicated as compared to canonical solutions.
We develop a taxonomy of bugs for incorrect codes that includes three categories and 12 sub-categories, and analyze the root cause for common bug types.
We propose a novel training-free iterative method that introduces self-critique, enabling LLMs to critique and correct their generated code based on bug types and compiler feedback.
arXiv Detail & Related papers (2024-07-08T17:27:17Z) - StepCoder: Improve Code Generation with Reinforcement Learning from
Compiler Feedback [58.20547418182074]
We introduce StepCoder, a novel framework for code generation, consisting of two main components.
CCCS addresses the exploration challenge by breaking the long sequences code generation task into a Curriculum of Code Completion Subtasks.
FGO only optimize the model by masking the unexecuted code segments to provide Fine-Grained Optimization.
Our method improves the ability to explore the output space and outperforms state-of-the-art approaches in corresponding benchmarks.
arXiv Detail & Related papers (2024-02-02T13:14:31Z) - Benchmarking and Explaining Large Language Model-based Code Generation:
A Causality-Centric Approach [12.214585409361126]
Large language models (LLMs)- based code generation is a complex and powerful black-box model.
We propose a novel causal graph-based representation of the prompt and the generated code.
We illustrate the insights that our framework can provide by studying over 3 popular LLMs with over 12 prompt adjustment strategies.
arXiv Detail & Related papers (2023-10-10T14:56:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.