Learning Efficient and Generalizable Graph Retriever for Knowledge-Graph Question Answering
- URL: http://arxiv.org/abs/2506.09645v1
- Date: Wed, 11 Jun 2025 12:03:52 GMT
- Title: Learning Efficient and Generalizable Graph Retriever for Knowledge-Graph Question Answering
- Authors: Tianjun Yao, Haoxuan Li, Zhiqiang Shen, Pan Li, Tongliang Liu, Kun Zhang,
- Abstract summary: Large Language Models (LLMs) have shown strong inductive reasoning ability across various domains.<n>Most existing RAG pipelines rely on unstructured text, limiting interpretability and structured reasoning.<n>Recent studies have explored integrating knowledge graphs with LLMs for knowledge graph question answering.<n>We propose RAPL, a novel framework for efficient and effective graph retrieval in KGQA.
- Score: 75.12322966980003
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) have shown strong inductive reasoning ability across various domains, but their reliability is hindered by the outdated knowledge and hallucinations. Retrieval-Augmented Generation mitigates these issues by grounding LLMs with external knowledge; however, most existing RAG pipelines rely on unstructured text, limiting interpretability and structured reasoning. Knowledge graphs, which represent facts as relational triples, offer a more structured and compact alternative. Recent studies have explored integrating knowledge graphs with LLMs for knowledge graph question answering (KGQA), with a significant proportion adopting the retrieve-then-reasoning paradigm. In this framework, graph-based retrievers have demonstrated strong empirical performance, yet they still face challenges in generalization ability. In this work, we propose RAPL, a novel framework for efficient and effective graph retrieval in KGQA. RAPL addresses these limitations through three aspects: (1) a two-stage labeling strategy that combines heuristic signals with parametric models to provide causally grounded supervision; (2) a model-agnostic graph transformation approach to capture both intra- and inter-triple interactions, thereby enhancing representational capacity; and (3) a path-based reasoning strategy that facilitates learning from the injected rational knowledge, and supports downstream reasoner through structured inputs. Empirically, RAPL outperforms state-of-the-art methods by $2.66\%-20.34\%$, and significantly reduces the performance gap between smaller and more powerful LLM-based reasoners, as well as the gap under cross-dataset settings, highlighting its superior retrieval capability and generalizability. Codes are available at: https://github.com/tianyao-aka/RAPL.
Related papers
- GraphRAG-R1: Graph Retrieval-Augmented Generation with Process-Constrained Reinforcement Learning [33.57411612551111]
We propose GraphRAG-R1, an adaptive GraphRAG framework by training LLMs with process-constrained outcome-based reinforcement learning (RL)<n>Our method can decompose complex problems, autonomously invoke retrieval tools, and perform effective reasoning.<n>Our framework can be flexibly integrated with various existing retrieval methods, consistently delivering performance improvements.
arXiv Detail & Related papers (2025-07-31T14:11:16Z) - Efficient Knowledge Graph Construction and Retrieval from Unstructured Text for Large-Scale RAG Systems [0.06597195879147556]
We propose a scalable and cost-efficient framework for deploying Graph-based Retrieval Augmented Generation (GraphRAG) in enterprise environments.<n>These results validate the feasibility of deploying GraphRAG systems in real-world, large-scale enterprise applications.
arXiv Detail & Related papers (2025-07-04T00:05:55Z) - Inference Scaled GraphRAG: Improving Multi Hop Question Answering on Knowledge Graphs [15.036480111358369]
Large Language Models (LLMs) have achieved impressive capabilities in language understanding and generation.<n>They continue to underperform on knowledge-intensive reasoning tasks due to limited access to structured context and multi-hop information.<n>We introduce Inference-Scaled GraphRAG, a novel framework that enhances LLM-based graph reasoning by applying inference-time compute scaling.
arXiv Detail & Related papers (2025-06-24T19:31:03Z) - Align-GRAG: Reasoning-Guided Dual Alignment for Graph Retrieval-Augmented Generation [75.9865035064794]
Large language models (LLMs) have demonstrated remarkable capabilities, but still struggle with issues like hallucinations and outdated information.<n>Retrieval-augmented generation (RAG) addresses these issues by grounding LLM outputs in external knowledge with an Information Retrieval (IR) system.<n>We propose Align-GRAG, a novel reasoning-guided dual alignment framework in post-retrieval phrase.
arXiv Detail & Related papers (2025-05-22T05:15:27Z) - Compile Scene Graphs with Reinforcement Learning [69.36723767339001]
Next-token prediction is the fundamental principle for training large language models (LLMs)<n>We introduce R1-SGG, a multimodal LLM (M-LLM) initially trained via supervised fine-tuning (SFT) on the scene graph dataset.<n>We design a set of graph-centric rewards, including three recall-based variants -- Hard Recall, Hard Recall+Relax, and Soft Recall.
arXiv Detail & Related papers (2025-04-18T10:46:22Z) - Graph-Augmented Reasoning: Evolving Step-by-Step Knowledge Graph Retrieval for LLM Reasoning [55.6623318085391]
Recent large language model (LLM) reasoning suffers from limited domain knowledge, susceptibility to hallucinations, and constrained reasoning depth.<n>This paper presents the first investigation into integrating step-wise knowledge graph retrieval with step-wise reasoning.<n>We propose KG-RAR, a framework centered on process-oriented knowledge graph construction, a hierarchical retrieval strategy, and a universal post-retrieval processing and reward model.
arXiv Detail & Related papers (2025-03-03T15:20:41Z) - Harnessing Large Language Models for Knowledge Graph Question Answering via Adaptive Multi-Aspect Retrieval-Augmentation [81.18701211912779]
We introduce an Adaptive Multi-Aspect Retrieval-augmented over KGs (Amar) framework.<n>This method retrieves knowledge including entities, relations, and subgraphs, and converts each piece of retrieved text into prompt embeddings.<n>Our method has achieved state-of-the-art performance on two common datasets.
arXiv Detail & Related papers (2024-12-24T16:38:04Z) - Simple Is Effective: The Roles of Graphs and Large Language Models in Knowledge-Graph-Based Retrieval-Augmented Generation [9.844598565914055]
Large Language Models (LLMs) demonstrate strong reasoning abilities but face limitations such as hallucinations and outdated knowledge.<n>We introduce SubgraphRAG, extending the Knowledge Graph (KG)-based Retrieval-Augmented Generation (RAG) framework that retrieves subgraphs.<n>Our approach innovatively integrates a lightweight multilayer perceptron with a parallel triple-scoring mechanism for efficient and flexible subgraph retrieval.
arXiv Detail & Related papers (2024-10-28T04:39:32Z) - How Do Large Language Models Understand Graph Patterns? A Benchmark for Graph Pattern Comprehension [53.6373473053431]
This work introduces a benchmark to assess large language models' capabilities in graph pattern tasks.<n>We have developed a benchmark that evaluates whether LLMs can understand graph patterns based on either terminological or topological descriptions.<n>Our benchmark encompasses both synthetic and real datasets, and a variety of models, with a total of 11 tasks and 7 models.
arXiv Detail & Related papers (2024-10-04T04:48:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.