論文の概要: Human-AI Governance (HAIG): A Trust-Utility Approach
- arxiv url: http://arxiv.org/abs/2505.01651v1
- Date: Sat, 03 May 2025 01:57:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-06 18:49:35.216628
- Title: Human-AI Governance (HAIG): A Trust-Utility Approach
- Title(参考訳): 人間-AIガバナンス(HAIG):信頼-ユーティリティアプローチ
- Authors: Zeynep Engin,
- Abstract要約: 本稿では,人間とAIの関係が進化する中で,信頼のダイナミクスを分析するためのHAIGフレームワークを紹介する。
我々の分析は、自己監督、推論権限、分散意思決定の技術的進歩が、不均一な信頼の進化をいかに引き起こすかを明らかにする。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper introduces the HAIG framework for analysing trust dynamics across evolving human-AI relationships. Current categorical frameworks (e.g., "human-in-the-loop" models) inadequately capture how AI systems evolve from tools to partners, particularly as foundation models demonstrate emergent capabilities and multi-agent systems exhibit autonomous goal-setting behaviours. As systems advance, agency redistributes in complex patterns that are better represented as positions along continua rather than discrete categories, though progression may include both gradual shifts and significant step changes. The HAIG framework operates across three levels: dimensions (Decision Authority Distribution, Process Autonomy, and Accountability Configuration), continua (gradual shifts along each dimension), and thresholds (critical points requiring governance adaptation). Unlike risk-based or principle-based approaches, HAIG adopts a trust-utility orientation, focusing on maintaining appropriate trust relationships that maximise utility while ensuring sufficient safeguards. Our analysis reveals how technical advances in self-supervision, reasoning authority, and distributed decision-making drive non-uniform trust evolution across both contextual variation and technological advancement. Case studies in healthcare and European regulation demonstrate how HAIG complements existing frameworks while offering a foundation for alternative approaches that anticipate governance challenges before they emerge.
- Abstract(参考訳): 本稿では,人間とAIの関係が進化する中で,信頼のダイナミクスを分析するためのHAIGフレームワークを紹介する。
現在のカテゴリのフレームワーク(例えば、"Human-in-the-loop"モデル)は、AIシステムがツールからパートナへと進化する過程を不十分に捉えています。
システムが進行するにつれて、エージェントは個別のカテゴリではなく連続体に沿った位置として表される複雑なパターンを再編成するが、進行には段階的なシフトと重要なステップの変化の両方が含まれるかもしれない。
HAIGフレームワークは、ディメンション(決定権限の配分、プロセスの自律性、説明責任の設定)、継続(各ディメンションに沿った段階的なシフト)、しきい値(ガバナンスの適応を必要とする臨界点)の3つのレベルで動作します。
リスクベースや原則ベースのアプローチとは異なり、HAIGは信頼ユーティリティ指向を採用し、適切な信頼関係を維持し、有効性を最大化し、十分な安全を確保することに注力する。
我々の分析は、自己監督、推論権限、分散意思決定の技術的進歩が、文脈変化と技術進歩の両面において、不均一な信頼の進化をいかに促すかを明らかにする。
医療とヨーロッパの規制におけるケーススタディは、HAIGが既存のフレームワークを補完し、ガバナンスの課題を発生前に予測する代替アプローチの基盤を提供しながら、どのようにしてHAIGが既存のフレームワークを補完するかを示している。
関連論文リスト
- Do LLMs trust AI regulation? Emerging behaviour of game-theoretic LLM agents [61.132523071109354]
本稿では、異なる規制シナリオ下での戦略選択をモデル化する、AI開発者、規制当局、ユーザ間の相互作用について検討する。
我々の研究は、純粋なゲーム理論エージェントよりも「悲観的」な姿勢を採用する傾向にある戦略的AIエージェントの出現する振る舞いを特定する。
論文 参考訳(メタデータ) (2025-04-11T15:41:21Z) - Media and responsible AI governance: a game-theoretic and LLM analysis [61.132523071109354]
本稿では,信頼できるAIシステムを育成する上での,AI開発者,規制当局,ユーザ,メディア間の相互作用について検討する。
進化的ゲーム理論と大言語モデル(LLM)を用いて、異なる規制体制下でこれらのアクター間の戦略的相互作用をモデル化する。
論文 参考訳(メタデータ) (2025-03-12T21:39:38Z) - On the Trustworthiness of Generative Foundation Models: Guideline, Assessment, and Perspective [333.9220561243189]
Generative Foundation Models (GenFMs) がトランスフォーメーションツールとして登場した。
彼らの広く採用されていることは、次元の信頼に関する重要な懸念を提起する。
本稿では,3つの主要なコントリビューションを通じて,これらの課題に対処するための包括的枠組みを提案する。
論文 参考訳(メタデータ) (2025-02-20T06:20:36Z) - Fairness in Agentic AI: A Unified Framework for Ethical and Equitable Multi-Agent System [0.0]
本稿では,公正性をエージェント相互作用の動的,創発的特性として扱う新しい枠組みを提案する。
この枠組みは、公正な制約、バイアス軽減戦略、および自律的なエージェント行動と社会的価値を整合させるインセンティブメカニズムを統合する。
論文 参考訳(メタデータ) (2025-02-11T04:42:00Z) - Trustworthiness in Stochastic Systems: Towards Opening the Black Box [1.7355698649527407]
AIシステムによる行動は、アライメントと潜在的な信頼を損なう恐れがある。
我々は、基礎性と信頼性の間の緊張と潜在的な対立に対して哲学的な視点を採っている。
我々は,AIシステムとユーザの両方に対して,アライメントをよりよく評価するための潜在値モデリングを提案する。
論文 参考訳(メタデータ) (2025-01-27T19:43:09Z) - Know Where You're Uncertain When Planning with Multimodal Foundation Models: A Formal Framework [54.40508478482667]
認識と計画生成の不確実性を解消し、定量化し、緩和する包括的枠組みを提案する。
本稿では,知覚と意思決定の独特な性質に合わせた手法を提案する。
この不確実性分散フレームワークは, 変動率を最大40%削減し, タスク成功率をベースラインに比べて5%向上させることを示した。
論文 参考訳(メタデータ) (2024-11-03T17:32:00Z) - Measuring Value Alignment [12.696227679697493]
本稿では,AIシステムと人的価値の整合性を定量化する新しいフォーマリズムを提案する。
このフォーマリズムを利用することで、AI開発者と倫理学者は、人間の価値と調和して動作するように、AIシステムを設計し、評価することができる。
論文 参考訳(メタデータ) (2023-12-23T12:30:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。