論文の概要: Efficient Multi Subject Visual Reconstruction from fMRI Using Aligned Representations
- arxiv url: http://arxiv.org/abs/2505.01670v1
- Date: Sat, 03 May 2025 03:35:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-06 18:49:35.225374
- Title: Efficient Multi Subject Visual Reconstruction from fMRI Using Aligned Representations
- Title(参考訳): 適応表現を用いたfMRIの多面的視覚再構成
- Authors: Christos Zangos, Danish Ebadulla, Thomas Christopher Sprague, Ambuj Singh,
- Abstract要約: 被験者の脳信号は、トレーニング中にこの共通空間に整列して、意味的に整列した共通脳を形成することができることを示す。
これは、対象固有の軽量モジュールを参照対象に合わせることが、従来のエンドツーエンドのトレーニング方法よりもはるかに効率的であることを示すのに有効である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This work introduces a novel approach to fMRI-based visual image reconstruction using a subject-agnostic common representation space. We show that the brain signals of the subjects can be aligned in this common space during training to form a semantically aligned common brain. This is leveraged to demonstrate that aligning subject-specific lightweight modules to a reference subject is significantly more efficient than traditional end-to-end training methods. Our approach excels in low-data scenarios. We evaluate our methods on different datasets, demonstrating that the common space is subject and dataset-agnostic.
- Abstract(参考訳): 本研究は、主観非依存の共通表現空間を用いたfMRIに基づく画像再構成の新しいアプローチを提案する。
被験者の脳信号は、トレーニング中にこの共通空間に整列して、意味的に整列した共通脳を形成することができることを示す。
これは、対象固有の軽量モジュールを参照対象に合わせることが、従来のエンドツーエンドのトレーニング方法よりもはるかに効率的であることを示すのに有効である。
当社のアプローチは低データのシナリオに優れています。
提案手法を異なるデータセット上で評価し,共通空間が対象であり,データセットに依存しないことを示す。
関連論文リスト
- Unlocking the Power of Spatial and Temporal Information in Medical Multimodal Pre-training [99.2891802841936]
我々は,空間的・時間的微粒なモデリングのためのMed-STフレームワークを提案する。
空間モデリングでは、Med-STはMixture of View Expert (MoVE)アーキテクチャを使用して、正面と横の両方のビューから異なる視覚的特徴を統合する。
時間的モデリングのために,フォワードマッピング分類 (FMC) とリバースマッピング回帰 (RMR) による新たな双方向サイクル整合性目標を提案する。
論文 参考訳(メタデータ) (2024-05-30T03:15:09Z) - See Through Their Minds: Learning Transferable Neural Representation from Cross-Subject fMRI [32.40827290083577]
機能的磁気共鳴イメージング(fMRI)からの視覚内容の解読は、人間の視覚系を照らすのに役立つ。
従来のアプローチは主に、トレーニングサンプルサイズに敏感な、主題固有のモデルを採用していた。
本稿では,fMRIデータを統合表現にマッピングするための,サブジェクト固有の浅層アダプタを提案する。
トレーニング中,マルチモーダル脳復号における視覚的・テキスト的監督の両面を活用する。
論文 参考訳(メタデータ) (2024-03-11T01:18:49Z) - PRIOR: Prototype Representation Joint Learning from Medical Images and
Reports [19.336988866061294]
医用画像とレポートのグローバルなアライメントとローカルなアライメントを組み合わせた表現学習フレームワークを提案する。
標準的なグローバルな多モードアライメント手法とは対照的に、細粒度表現に局所アライメントモジュールを用いる。
低レベルのローカライズされた視覚的および高レベルの臨床言語的特徴に焦点を合わせることができる文量プロトタイプメモリバンクを構築する。
論文 参考訳(メタデータ) (2023-07-24T07:49:01Z) - Learnable Weight Initialization for Volumetric Medical Image Segmentation [66.3030435676252]
本稿では,学習可能な重みに基づくハイブリッド医療画像セグメンテーション手法を提案する。
我々のアプローチはどんなハイブリッドモデルにも簡単に統合でき、外部のトレーニングデータを必要としない。
多臓器・肺がんセグメンテーションタスクの実験は、我々のアプローチの有効性を実証している。
論文 参考訳(メタデータ) (2023-06-15T17:55:05Z) - A Meta-embedding-based Ensemble Approach for ICD Coding Prediction [64.42386426730695]
国際疾病分類 (icd) は、世界中で臨床コーディングに使われているデファクトコードである。
これらのコードにより、医療提供者は償還を請求し、診断情報の効率的な保管と検索を容易にします。
提案手法は,日常的な医学データと科学論文の外部知識を用いて,効果的に単語ベクトルを訓練することにより,神経モデルの性能を高める。
論文 参考訳(メタデータ) (2021-02-26T17:49:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。