論文の概要: Topology-Aware CLIP Few-Shot Learning
- arxiv url: http://arxiv.org/abs/2505.01694v1
- Date: Sat, 03 May 2025 04:58:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-06 18:49:35.230334
- Title: Topology-Aware CLIP Few-Shot Learning
- Title(参考訳): トポロジーを考慮したCLIP/Few-Shot学習
- Authors: Dazhi Huang,
- Abstract要約: 本稿では,Representation Topology DivergenceをTask Residualフレームワークに統合したトポロジ対応チューニング手法を提案する。
RTDとクロスエントロピー損失を組み合わせた視覚・テキスト表現のトポロジ的構造を明示的に整合させることにより,本手法は撮影性能を向上する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Efficiently adapting large Vision-Language Models (VLMs) like CLIP for few-shot learning poses challenges in balancing pre-trained knowledge retention and task-specific adaptation. Existing methods often overlook valuable structural information within the VLM's latent space. We introduce a topology-aware tuning approach integrating Representation Topology Divergence (RTD) into the Task Residual (TR) framework. By explicitly aligning the topological structures of visual and text representations using a combined RTD and Cross-Entropy loss, while freezing base VLM encoders, our method enhances few-shot performance. We optimize only lightweight Task Residual parameters, effectively leveraging topological information. Across 6 diverse benchmark datasets, our approach demonstrates significant gains, achieving an average accuracy improvement of 1-2\% over relevant baseline methods in few-shot settings. This work presents an effective strategy to boost VLM few-shot capabilities by incorporating topological alignment.
- Abstract(参考訳): CLIPのような大規模なビジョンランゲージモデル(VLM)を数ショットの学習に効果的に適用することは、事前訓練された知識保持とタスク固有の適応のバランスをとる上での課題を生じさせる。
既存の手法は、しばしばVLMの潜伏空間における貴重な構造情報を見落としている。
本稿では,Representation Topology Divergence (RTD) を Task Residual (TR) フレームワークに統合したトポロジ対応チューニング手法を提案する。
RTDとクロスエントロピー損失を組み合わせた視覚・テキスト表現のトポロジ的構造を明示的に調整し,ベースVLMエンコーダを凍結することにより,少数ショット性能を向上させる。
我々は、トポロジ的情報を効果的に活用し、軽量なタスク残余パラメータのみを最適化する。
提案手法は,6つの多様なベンチマークデータセットにまたがって有意な利得を示し,関連するベースライン手法よりも平均精度が1-2\%向上した。
本研究は, トポロジカルアライメントを組み込むことで, VLM小ショット能力を向上するための効果的な戦略を示す。
関連論文リスト
- Underlying Semantic Diffusion for Effective and Efficient In-Context Learning [113.4003355229632]
Underlying Semantic Diffusion (US-Diffusion)は、セマンティック学習、計算効率、文脈内学習能力を高める拡張拡散モデルである。
本稿では,フィードバック信号を利用したフィードバック支援学習(FAL)フレームワークを提案する。
また,高雑音レベルの時間ステップで高密度サンプリングを行うためのプラグイン・アンド・プレイの効率的なサンプリング戦略(ESS)を提案する。
論文 参考訳(メタデータ) (2025-03-06T03:06:22Z) - New Dataset and Methods for Fine-Grained Compositional Referring Expression Comprehension via Specialist-MLLM Collaboration [49.180693704510006]
Referring Expression (REC) は、言語理解、画像理解、言語と画像の接点の相互作用を評価するためのクロスモーダルなタスクである。
2つの重要な特徴を持つ新しいRECデータセットを導入する。第一に、オブジェクトカテゴリ、属性、関係性に関する詳細な推論を必要とする、制御可能な難易度で設計されている。
第二に、微粒な編集によって生成された否定的なテキストと画像が組み込まれ、既存のターゲットを拒否するモデルの能力を明示的にテストする。
論文 参考訳(メタデータ) (2025-02-27T13:58:44Z) - Fully Fine-tuned CLIP Models are Efficient Few-Shot Learners [8.707819647492467]
視覚言語モデル全体(VLM)の精巧な精細化によるタスク固有情報の取得について検討する。
これらの問題を緩和するために,識別的視覚テキストタスクを設計するCLIP-CITEというフレームワークを提案する。
論文 参考訳(メタデータ) (2024-07-04T15:22:54Z) - Parameter-Efficient Active Learning for Foundational models [7.799711162530711]
基礎的な視覚変換器モデルは、多くの視覚タスクにおいて、驚くほどのショットパフォーマンスを示している。
本研究は,アクティブラーニング(AL)フレームワークにおけるパラメータ効率の良い微調整手法の適用に関する新たな研究である。
論文 参考訳(メタデータ) (2024-06-13T16:30:32Z) - Interpetable Target-Feature Aggregation for Multi-Task Learning based on Bias-Variance Analysis [53.38518232934096]
マルチタスク学習(MTL)は、タスク間の共有知識を活用し、一般化とパフォーマンスを改善するために設計された強力な機械学習パラダイムである。
本稿では,タスククラスタリングと特徴変換の交点におけるMTL手法を提案する。
両段階において、鍵となる側面は減った目標と特徴の解釈可能性を維持することである。
論文 参考訳(メタデータ) (2024-06-12T08:30:16Z) - ALP: Action-Aware Embodied Learning for Perception [60.64801970249279]
認知のための行動認識型身体学習(ALP)について紹介する。
ALPは、強化学習ポリシーと逆ダイナミクス予測目標を最適化することにより、行動情報を表現学習に組み込む。
ALPは、複数の下流認識タスクにおいて、既存のベースラインよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-06-16T21:51:04Z) - An Optimization-Based Meta-Learning Model for MRI Reconstruction with
Diverse Dataset [4.9259403018534496]
メタラーニングフレームワークを用いた一般化可能なMRI再構成モデルを構築した。
提案するネットワークは,学習者適応モデルを用いて正規化関数を学習する。
メタトレーニング後および半減期における未確認課題の即時訓練の結果を検証した。
論文 参考訳(メタデータ) (2021-10-02T03:21:52Z) - One-Shot Object Detection without Fine-Tuning [62.39210447209698]
本稿では,第1ステージのMatching-FCOSネットワークと第2ステージのStructure-Aware Relation Moduleからなる2段階モデルを提案する。
また,検出性能を効果的に向上する新たなトレーニング戦略を提案する。
提案手法は,複数のデータセット上で一貫した最先端のワンショット性能を上回る。
論文 参考訳(メタデータ) (2020-05-08T01:59:23Z) - Generalized Reinforcement Meta Learning for Few-Shot Optimization [3.7675996866306845]
本稿では, 汎用的かつ柔軟な強化学習(RL)に基づくメタラーニングフレームワークを提案する。
我々のフレームワークは簡単にネットワークアーキテクチャ検索に拡張できる。
論文 参考訳(メタデータ) (2020-05-04T03:21:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。