論文の概要: Context-Aware Online Conformal Anomaly Detection with Prediction-Powered Data Acquisition
- arxiv url: http://arxiv.org/abs/2505.01783v1
- Date: Sat, 03 May 2025 10:58:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-06 18:49:35.267274
- Title: Context-Aware Online Conformal Anomaly Detection with Prediction-Powered Data Acquisition
- Title(参考訳): 予測型データ取得によるコンテクスト対応オンラインコンフォーマル異常検出
- Authors: Amirmohammad Farzaneh, Osvaldo Simeone,
- Abstract要約: 文脈認識型共形オンライン異常検出(C-PP-COAD)を導入する。
本フレームワークは,データ不足を軽減するために合成キャリブレーションデータを戦略的に活用し,コンテキストに基づく実データの統合を適応的に行う。
C-PP-COADは、偽発見率(FDR)を保証せずに、実際のキャリブレーションデータへの依存を著しく低減することを示した。
- 参考スコア(独自算出の注目度): 35.59201763567714
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Online anomaly detection is essential in fields such as cybersecurity, healthcare, and industrial monitoring, where promptly identifying deviations from expected behavior can avert critical failures or security breaches. While numerous anomaly scoring methods based on supervised or unsupervised learning have been proposed, current approaches typically rely on a continuous stream of real-world calibration data to provide assumption-free guarantees on the false discovery rate (FDR). To address the inherent challenges posed by limited real calibration data, we introduce context-aware prediction-powered conformal online anomaly detection (C-PP-COAD). Our framework strategically leverages synthetic calibration data to mitigate data scarcity, while adaptively integrating real data based on contextual cues. C-PP-COAD utilizes conformal p-values, active p-value statistics, and online FDR control mechanisms to maintain rigorous and reliable anomaly detection performance over time. Experiments conducted on both synthetic and real-world datasets demonstrate that C-PP-COAD significantly reduces dependency on real calibration data without compromising guaranteed FDR control.
- Abstract(参考訳): オンラインの異常検出は、サイバーセキュリティ、医療、産業監視といった分野において必須であり、期待される行動からの逸脱を迅速に特定することで、重大な障害やセキュリティ侵害を回避することができる。
教師付きあるいは教師なし学習に基づく多くの異常スコアリング手法が提案されているが、現在のアプローチは一般に、偽発見率(FDR)に対する仮定のない保証を提供するために、実世界のキャリブレーションデータの連続的なストリームに依存している。
実キャリブレーションの限られたデータによって引き起こされる本質的な課題に対処するために,コンテキスト認識型オンラインアノマリー検出(C-PP-COAD)を導入する。
本フレームワークは,データ不足を軽減するために合成キャリブレーションデータを戦略的に活用し,コンテキストに基づく実データの統合を適応的に行う。
C-PP-COADは、整合性p値、アクティブp値統計、オンラインFDR制御機構を利用して、厳密で信頼性の高い異常検出性能を経時的に維持する。
C-PP-COADはFDR制御を保証せずに実際のキャリブレーションデータへの依存を著しく低減することを示した。
関連論文リスト
- Conformal Segmentation in Industrial Surface Defect Detection with Statistical Guarantees [2.0257616108612373]
工業環境では、鋼の表面欠陥はサービス寿命を著しく損なうことができ、潜在的な安全リスクを高めることができる。
従来の欠陥検出手法は主に手動検査に依存しており、これは低効率と高コストに悩まされている。
ユーザ定義のリスクレベルに基づいて統計的に厳密なしきい値を作成し、テスト画像の高確率欠陥画素を同定する。
種々のキャリブレーションとテストの比率で予測されるテストセット誤差率に対する頑健かつ効率的な制御を実証する。
論文 参考訳(メタデータ) (2025-04-24T16:33:56Z) - Robust Conformal Outlier Detection under Contaminated Reference Data [20.864605211132663]
コンフォーマル予測は、機械学習予測を校正するための柔軟なフレームワークである。
異常値検出では、この校正はタイプIエラー率を制御するためにラベル付き不整値データの参照セットに依存する。
本稿では, 汚染がコンフォメーション法の有効性に与える影響を解析する。
論文 参考訳(メタデータ) (2025-02-07T10:23:25Z) - Noise-Adaptive Conformal Classification with Marginal Coverage [53.74125453366155]
本稿では,ランダムラベルノイズによる交換性からの偏差を効率的に処理できる適応型共形推論手法を提案する。
本手法は,合成および実データに対して,その有効性を示す広範囲な数値実験により検証する。
論文 参考訳(メタデータ) (2025-01-29T23:55:23Z) - Federated Learning for Efficient Condition Monitoring and Anomaly Detection in Industrial Cyber-Physical Systems [0.30723404270319693]
本稿では,センサの信頼性に基づく適応モデルアグリゲーション,資源最適化のための動的ノード選択,耐故障性のためのワイブルチェックポインティングという,3つの重要な革新を伴う拡張FLフレームワークを提案する。
NASAベアリングと水圧システムのデータセットの実験は、最先端のFL法と比較して優れた性能を示し、異常検出とノード故障時の精度の維持において99.5%のAUC-ROCを達成した。
論文 参考訳(メタデータ) (2025-01-28T03:04:47Z) - Reshaping the Online Data Buffering and Organizing Mechanism for Continual Test-Time Adaptation [49.53202761595912]
継続的なテスト時間適応は、訓練済みのソースモデルを適用して、教師なしのターゲットドメインを継続的に変更する。
我々は、オンライン環境、教師なしの自然、エラー蓄積や破滅的な忘れのリスクなど、このタスクの課題を分析する。
教師なしシングルパスデータストリームから重要サンプルを高い確実性で識別・集約する不確実性を考慮したバッファリング手法を提案する。
論文 参考訳(メタデータ) (2024-07-12T15:48:40Z) - Leave-One-Out-, Bootstrap- and Cross-Conformal Anomaly Detectors [0.0]
本研究では,異常検出のためのLeft-out-out-, bootstrap-, cross-conformalメソッドを正式に定義し,評価する。
我々は,再サンプリング・コンフォーマルな$p$-値を求める導出手法が,統計効率(全コンフォーマル)と計算効率(スプリット・コンフォーマル)の両立を図っていることを実証した。
論文 参考訳(メタデータ) (2024-02-26T08:22:40Z) - PAC-Based Formal Verification for Out-of-Distribution Data Detection [4.406331747636832]
本研究は、VAEの符号化プロセスを用いて、OOD検出に基づくほぼ正しい(PAC)保証を行う。
ユーザ定義の信頼性で不慣れなインスタンスに検出エラーをバインドするために使用される。
論文 参考訳(メタデータ) (2023-04-04T07:33:02Z) - Risk Minimization from Adaptively Collected Data: Guarantees for
Supervised and Policy Learning [57.88785630755165]
経験的リスク最小化(Empirical Risk Minimization, ERM)は、機械学習のワークホースであるが、適応的に収集されたデータを使用すると、そのモデルに依存しない保証が失敗する可能性がある。
本研究では,仮説クラス上での損失関数の平均値を最小限に抑えるため,適応的に収集したデータを用いた一般的な重み付きERMアルゴリズムについて検討する。
政策学習では、探索がゼロになるたびに既存の文献のオープンギャップを埋める率-最適後悔保証を提供する。
論文 参考訳(メタデータ) (2021-06-03T09:50:13Z) - Unsupervised Domain Adaptation for Speech Recognition via Uncertainty
Driven Self-Training [55.824641135682725]
WSJ をソースドメインとし,TED-Lium 3 とSWITCHBOARD を併用したドメイン適応実験を行った。
論文 参考訳(メタデータ) (2020-11-26T18:51:26Z) - Provably Efficient Causal Reinforcement Learning with Confounded
Observational Data [135.64775986546505]
オフラインで収集されたデータセット(観測データ)を組み込んで、オンライン環境でのサンプル効率を改善する方法について検討する。
提案手法は,観測データを効率よく組み込んだ,分解された楽観的値反復 (DOVI) アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-06-22T14:49:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。