From Players to Champions: A Generalizable Machine Learning Approach for Match Outcome Prediction with Insights from the FIFA World Cup
- URL: http://arxiv.org/abs/2505.01902v1
- Date: Sat, 03 May 2025 19:17:20 GMT
- Title: From Players to Champions: A Generalizable Machine Learning Approach for Match Outcome Prediction with Insights from the FIFA World Cup
- Authors: Ali Al-Bustami, Zaid Ghazal,
- Abstract summary: This paper presents a machine learning framework specifically designed to forecast match winners in FIFA World Cup.<n>By integrating both team-level historical data and player-specific performance metrics such as goals, assists, passing accuracy, and tackles, we capture nuanced interactions often overlooked by traditional aggregate models.<n> Experimental results on data from the FIFA 2022 World Cup demonstrate our approach's superior accuracy compared to baseline method.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate prediction of FIFA World Cup match outcomes holds significant value for analysts, coaches, bettors, and fans. This paper presents a machine learning framework specifically designed to forecast match winners in FIFA World Cup. By integrating both team-level historical data and player-specific performance metrics such as goals, assists, passing accuracy, and tackles, we capture nuanced interactions often overlooked by traditional aggregate models. Our methodology processes multi-year data to create year-specific team profiles that account for evolving rosters and player development. We employ classification techniques complemented by dimensionality reduction and hyperparameter optimization, to yield robust predictive models. Experimental results on data from the FIFA 2022 World Cup demonstrate our approach's superior accuracy compared to baseline method. Our findings highlight the importance of incorporating individual player attributes and team-level composition to enhance predictive performance, offering new insights into player synergy, strategic match-ups, and tournament progression scenarios. This work underscores the transformative potential of rich, player-centric data in sports analytics, setting a foundation for future exploration of advanced learning architectures such as graph neural networks to model complex team interactions.
Related papers
- Player-Team Heterogeneous Interaction Graph Transformer for Soccer Outcome Prediction [8.197004730382396]
HIGFormer is a novel graph-augmented transformer-based deep learning model for soccer outcome prediction.<n>It captures both fine-grained player dynamics and high-level team interactions.<n>Experiments on the WyScout Open Access dataset, a large-scale real-world soccer dataset, demonstrate that HIGFormer significantly outperforms existing methods in prediction accuracy.
arXiv Detail & Related papers (2025-07-14T06:43:36Z) - Tackling Data Heterogeneity in Federated Time Series Forecasting [61.021413959988216]
Time series forecasting plays a critical role in various real-world applications, including energy consumption prediction, disease transmission monitoring, and weather forecasting.
Most existing methods rely on a centralized training paradigm, where large amounts of data are collected from distributed devices to a central cloud server.
We propose a novel framework, Fed-TREND, to address data heterogeneity by generating informative synthetic data as auxiliary knowledge carriers.
arXiv Detail & Related papers (2024-11-24T04:56:45Z) - RisingBALLER: A player is a token, a match is a sentence, A path towards a foundational model for football players data analytics [0.0]
I introduce RisingBALLER, the first publicly available approach that leverages a transformer model trained on football match data to learn match-specific player representations.
More than a simple machine learning model, RisingBALLER is a comprehensive framework designed to transform football data analytics by learning high-level foundational features for players.
arXiv Detail & Related papers (2024-10-01T14:39:22Z) - Predicting soccer matches with complex networks and machine learning [0.0]
This study aims to highlight the use of complex networks as an alternative tool for predicting soccer match outcomes.
Models based on passing networks were as effective as traditional'' models, which use general match statistics.
arXiv Detail & Related papers (2024-09-19T21:45:25Z) - MatchTime: Towards Automatic Soccer Game Commentary Generation [52.431010585268865]
We consider constructing an automatic soccer game commentary model to improve the audiences' viewing experience.
First, observing the prevalent video-text misalignment in existing datasets, we manually annotate timestamps for 49 matches.
Second, we propose a multi-modal temporal alignment pipeline to automatically correct and filter the existing dataset at scale.
Third, based on our curated dataset, we train an automatic commentary generation model, named MatchVoice.
arXiv Detail & Related papers (2024-06-26T17:57:25Z) - Estimating Player Performance in Different Contexts Using Fine-tuned Large Events Models [0.7373617024876725]
This paper introduces an innovative application of Large Event Models (LEMs) in soccer analytics.
LEMs predict variables for subsequent events rather than words.
We focus on fine-tuning LEMs with the WyScout dataset for the 2017-18 Premier League season.
arXiv Detail & Related papers (2024-02-09T22:47:25Z) - About latent roles in forecasting players in team sports [47.066729480128856]
Team sports contain a significant social component that influences interactions between teammates and opponents.
We create RolFor, a novel end-to-end model for Role-based Forecasting.
arXiv Detail & Related papers (2023-04-17T13:33:23Z) - Betting the system: Using lineups to predict football scores [0.0]
This paper aims to reduce randomness in football by analysing the role of lineups in final scores.
Football clubs invest millions of dollars on lineups and knowing how individual statistics translate to better outcomes can optimise investments.
Sports betting is growing exponentially and being able to predict the future is profitable and desirable.
arXiv Detail & Related papers (2022-10-12T15:47:42Z) - GCN-WP -- Semi-Supervised Graph Convolutional Networks for Win
Prediction in Esports [84.55775845090542]
We propose a semi-supervised win prediction model for esports based on graph convolutional networks.
GCN-WP integrates over 30 features about the match and players and employs graph convolution to classify games based on their neighborhood.
Our model achieves state-of-the-art prediction accuracy when compared to machine learning or skill rating models for LoL.
arXiv Detail & Related papers (2022-07-26T21:38:07Z) - Collusion Detection in Team-Based Multiplayer Games [57.153233321515984]
We propose a system that detects colluding behaviors in team-based multiplayer games.
The proposed method analyzes the players' social relationships paired with their in-game behavioral patterns.
We then automate the detection using Isolation Forest, an unsupervised learning technique specialized in highlighting outliers.
arXiv Detail & Related papers (2022-03-10T02:37:39Z) - Transfer Portal: Accurately Forecasting the Impact of a Player Transfer
in Soccer [0.0]
Predicting future player performance when transferred between different leagues is a complex task.
In this paper, we present a method which addresses these issues and enables us to make accurate predictions of future performance.
Our Transfer Portal model utilizes a personalized neural network accounting for both stylistic and ability level input representations for players, teams, and leagues to simulate future player performance at any chosen club.
arXiv Detail & Related papers (2022-01-27T14:15:09Z) - Game Plan: What AI can do for Football, and What Football can do for AI [83.79507996785838]
Predictive and prescriptive football analytics require new developments and progress at the intersection of statistical learning, game theory, and computer vision.
We illustrate that football analytics is a game changer of tremendous value, in terms of not only changing the game of football itself, but also in terms of what this domain can mean for the field of AI.
arXiv Detail & Related papers (2020-11-18T10:26:02Z) - Evaluating and Rewarding Teamwork Using Cooperative Game Abstractions [103.3630903577951]
We use cooperative game theory to study teams of artificial RL agents as well as real world teams from professional sports.
We introduce a parametric model called cooperative game abstractions (CGAs) for estimating CFs from data.
We provide identification results and sample bounds complexity for CGA models as well as error bounds in the estimation of the Shapley Value using CGAs.
arXiv Detail & Related papers (2020-06-16T22:03:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.