About latent roles in forecasting players in team sports
- URL: http://arxiv.org/abs/2304.08272v4
- Date: Tue, 16 Apr 2024 13:20:44 GMT
- Title: About latent roles in forecasting players in team sports
- Authors: Luca Scofano, Alessio Sampieri, Giuseppe Re, Matteo Almanza, Alessandro Panconesi, Fabio Galasso,
- Abstract summary: Team sports contain a significant social component that influences interactions between teammates and opponents.
We create RolFor, a novel end-to-end model for Role-based Forecasting.
- Score: 47.066729480128856
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Forecasting players in sports has grown in popularity due to the potential for a tactical advantage and the applicability of such research to multi-agent interaction systems. Team sports contain a significant social component that influences interactions between teammates and opponents. However, it still needs to be fully exploited. In this work, we hypothesize that each participant has a specific function in each action and that role-based interaction is critical for predicting players' future moves. We create RolFor, a novel end-to-end model for Role-based Forecasting. RolFor uses a new module we developed called Ordering Neural Networks (OrderNN) to permute the order of the players such that each player is assigned to a latent role. The latent role is then modeled with a RoleGCN. Thanks to its graph representation, it provides a fully learnable adjacency matrix that captures the relationships between roles and is subsequently used to forecast the players' future trajectories. Extensive experiments on a challenging NBA basketball dataset back up the importance of roles and justify our goal of modeling them using optimizable models. When an oracle provides roles, the proposed RolFor compares favorably to the current state-of-the-art (it ranks first in terms of ADE and second in terms of FDE errors). However, training the end-to-end RolFor incurs the issues of differentiability of permutation methods, which we experimentally review. Finally, this work restates differentiable ranking as a difficult open problem and its great potential in conjunction with graph-based interaction models. Project is available at: https://www.pinlab.org/aboutlatentroles
Related papers
- Capturing Minds, Not Just Words: Enhancing Role-Playing Language Models with Personality-Indicative Data [58.92110996840019]
We propose to enhance role-playing language models (RPLMs) via personality-indicative data.
Specifically, we leverage questions from psychological scales and distill advanced RPAs to generate dialogues that grasp the minds of characters.
Experimental results validate that RPLMs trained with our dataset exhibit advanced role-playing capabilities for both general and personality-related evaluations.
arXiv Detail & Related papers (2024-06-27T06:24:00Z) - A Dialogue Game for Eliciting Balanced Collaboration [64.61707514432533]
We present a two-player 2D object placement game in which the players must negotiate the goal state themselves.
We show empirically that human players exhibit a variety of role distributions, and that balanced collaboration improves task performance.
arXiv Detail & Related papers (2024-06-12T13:35:10Z) - Large Language Models are Superpositions of All Characters: Attaining
Arbitrary Role-play via Self-Alignment [62.898963074989766]
We introduce Ditto, a self-alignment method for role-play.
This method creates a role-play training set comprising 4,000 characters, surpassing the scale of currently available datasets by tenfold.
We present the first comprehensive cross-supervision alignment experiment in the role-play domain.
arXiv Detail & Related papers (2024-01-23T03:56:22Z) - Who You Play Affects How You Play: Predicting Sports Performance Using
Graph Attention Networks With Temporal Convolution [29.478765505215538]
This study presents a novel deep learning method, called GATv2-GCN, for predicting player performance in sports.
We use a graph attention network to capture the attention that each player pays to each other, allowing for more accurate modeling.
We evaluate the performance of our model using real-world sports data, demonstrating its effectiveness in predicting player performance.
arXiv Detail & Related papers (2023-03-29T14:48:51Z) - Graph Neural Networks to Predict Sports Outcomes [0.0]
We introduce a sport-agnostic graph-based representation of game states.
We then use our proposed graph representation as input to graph neural networks to predict sports outcomes.
arXiv Detail & Related papers (2022-07-28T14:45:02Z) - Learning to Transfer Role Assignment Across Team Sizes [48.43860606706273]
We propose a framework to learn role assignment and transfer across team sizes.
We demonstrate that re-using the role-based credit assignment structure can foster the learning process of larger reinforcement learning teams.
arXiv Detail & Related papers (2022-04-17T11:22:01Z) - Transfer Portal: Accurately Forecasting the Impact of a Player Transfer
in Soccer [0.0]
Predicting future player performance when transferred between different leagues is a complex task.
In this paper, we present a method which addresses these issues and enables us to make accurate predictions of future performance.
Our Transfer Portal model utilizes a personalized neural network accounting for both stylistic and ability level input representations for players, teams, and leagues to simulate future player performance at any chosen club.
arXiv Detail & Related papers (2022-01-27T14:15:09Z) - You Mostly Walk Alone: Analyzing Feature Attribution in Trajectory
Prediction [52.442129609979794]
Recent deep learning approaches for trajectory prediction show promising performance.
It remains unclear which features such black-box models actually learn to use for making predictions.
This paper proposes a procedure that quantifies the contributions of different cues to model performance.
arXiv Detail & Related papers (2021-10-11T14:24:15Z) - My Team Will Go On: Differentiating High and Low Viability Teams through
Team Interaction [17.729317295204368]
We train a viability classification model over a dataset of 669 10-minute text conversations of online teams.
We find that a lasso regression model achieves an accuracy of.74--.92 AUC ROC under different thresholds of classifying viability scores.
arXiv Detail & Related papers (2020-10-14T21:33:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.