Semantic Intelligence: Integrating GPT-4 with A Planning in Low-Cost Robotics
- URL: http://arxiv.org/abs/2505.01931v1
- Date: Sat, 03 May 2025 21:49:14 GMT
- Title: Semantic Intelligence: Integrating GPT-4 with A Planning in Low-Cost Robotics
- Authors: Jesse Barkley, Abraham George, Amir Barati Farimani,
- Abstract summary: We present a framework that integrates GPT-4's semantic reasoning with A* on a low-cost robot platform operating on ROS2 Humble.<n>We demonstrate multi-step reasoning for sequential tasks, such as first navigating to a resource goal and then reaching a final destination safely.<n>Results show that while A* is faster and more accurate for basic route generation and obstacle avoidance, the GPT-4-integrated system achieves high success rates (96-100%) on semantic tasks that are infeasible for pure geometric planners.
- Score: 8.943924354248622
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Classical robot navigation often relies on hardcoded state machines and purely geometric path planners, limiting a robot's ability to interpret high-level semantic instructions. In this paper, we first assess GPT-4's ability to act as a path planner compared to the A* algorithm, then present a hybrid planning framework that integrates GPT-4's semantic reasoning with A* on a low-cost robot platform operating on ROS2 Humble. Our approach eliminates explicit finite state machine (FSM) coding by using prompt-based GPT-4 reasoning to handle task logic while maintaining the accurate paths computed by A*. The GPT-4 module provides semantic understanding of instructions and environmental cues (e.g., recognizing toxic obstacles or crowded areas to avoid, or understanding low-battery situations requiring alternate route selection), and dynamically adjusts the robot's occupancy grid via obstacle buffering to enforce semantic constraints. We demonstrate multi-step reasoning for sequential tasks, such as first navigating to a resource goal and then reaching a final destination safely. Experiments on a Petoi Bittle robot with an overhead camera and Raspberry Pi Zero 2W compare classical A* against GPT-4-assisted planning. Results show that while A* is faster and more accurate for basic route generation and obstacle avoidance, the GPT-4-integrated system achieves high success rates (96-100%) on semantic tasks that are infeasible for pure geometric planners. This work highlights how affordable robots can exhibit intelligent, context-aware behaviors by leveraging large language model reasoning with minimal hardware and no fine-tuning.
Related papers
- Robot-R1: Reinforcement Learning for Enhanced Embodied Reasoning in Robotics [55.05920313034645]
We introduce Robot-R1, a novel framework that leverages reinforcement learning to enhance embodied reasoning specifically for robot control.<n>Inspired by the DeepSeek-R1 learning approach, Robot-R1 samples reasoning-based responses and reinforces those that lead to more accurate predictions.<n>Our experiments show that models trained with Robot-R1 outperform SFT methods on embodied reasoning tasks.
arXiv Detail & Related papers (2025-05-29T16:41:12Z) - REMAC: Self-Reflective and Self-Evolving Multi-Agent Collaboration for Long-Horizon Robot Manipulation [57.628771707989166]
We propose an adaptive multi-agent planning framework, termed REMAC, that enables efficient, scene-agnostic multi-robot long-horizon task planning and execution.<n>ReMAC incorporates two key modules: a self-reflection module performing pre-conditions and post-condition checks in the loop to evaluate progress and refine plans, and a self-evolvement module dynamically adapting plans based on scene-specific reasoning.
arXiv Detail & Related papers (2025-03-28T03:51:40Z) - SCoTT: Strategic Chain-of-Thought Tasking for Wireless-Aware Robot Navigation in Digital Twins [78.53885607559958]
We propose SCoTT, a wireless-aware path planning framework.<n>We show that SCoTT achieves path gains within 2% of DP-WA* while consistently generating shorter trajectories.<n>We also show the practical viability of our approach by deploying SCoTT as a ROS node within Gazebo simulations.
arXiv Detail & Related papers (2024-11-27T10:45:49Z) - QuadrupedGPT: Towards a Versatile Quadruped Agent in Open-ended Worlds [51.05639500325598]
We introduce QuadrupedGPT, designed to follow diverse commands with agility comparable to that of a pet.<n>Our agent shows proficiency in handling diverse tasks and intricate instructions, representing a significant step toward the development of versatile quadruped agents.
arXiv Detail & Related papers (2024-06-24T12:14:24Z) - Neural Potential Field for Obstacle-Aware Local Motion Planning [46.42871544295734]
We propose a neural network model that returns a differentiable collision cost based on robot pose, obstacle map, and robot footprint.
Our architecture includes neural image encoders, which transform obstacle maps and robot footprints into embeddings.
Experiment on Husky UGV mobile robot showed that our approach allows real-time and safe local planning.
arXiv Detail & Related papers (2023-10-25T05:00:21Z) - POA: Passable Obstacles Aware Path-planning Algorithm for Navigation of
a Two-wheeled Robot in Highly Cluttered Environments [53.41594627336511]
Passable Obstacles Aware (POA) planner is a novel navigation method for two-wheeled robots in a cluttered environment.
Our algorithm allows two-wheeled robots to find a path through passable obstacles.
arXiv Detail & Related papers (2023-07-16T19:44:27Z) - AlphaBlock: Embodied Finetuning for Vision-Language Reasoning in Robot
Manipulation [50.737355245505334]
We propose a novel framework for learning high-level cognitive capabilities in robot manipulation tasks.
The resulting dataset AlphaBlock consists of 35 comprehensive high-level tasks of multi-step text plans and paired observation.
arXiv Detail & Related papers (2023-05-30T09:54:20Z) - Towards Plug'n Play Task-Level Autonomy for Robotics Using POMDPs and
Generative Models [0.0]
We describe an approach for integrating robot skills into a working autonomous robot controller that schedules its skills to achieve a specified task.
Our Generative Skill Documentation Language (GSDL) makes code documentation compact and more expressive.
An abstraction mapping (AM) bridges the gap between low-level robot code and the abstract AI planning model.
arXiv Detail & Related papers (2022-07-20T07:27:47Z) - Intelligent Trajectory Design for RIS-NOMA aided Multi-robot
Communications [59.34642007625687]
The goal is to maximize the sum-rate of whole trajectories for multi-robot system by jointly optimizing trajectories and NOMA decoding orders of robots.
An integrated machine learning (ML) scheme is proposed, which combines long short-term memory (LSTM)-autoregressive integrated moving average (ARIMA) model and dueling double deep Q-network (D$3$QN) algorithm.
arXiv Detail & Related papers (2022-05-03T17:14:47Z) - Learning Forward Dynamics Model and Informed Trajectory Sampler for Safe
Quadruped Navigation [1.2783783498844021]
A typical SOTA system is composed of four main modules -- mapper, global planner, local planner, and command-tracking controller.
We build a robust and safe local planner which is designed to generate a velocity plan to track a coarsely planned path from the global planner.
Using our framework, a quadruped robot can autonomously navigate in various complex environments without a collision and generate a smoother command plan compared to the baseline method.
arXiv Detail & Related papers (2022-04-19T04:01:44Z) - Hierarchical Path-planning from Speech Instructions with Spatial Concept-based Topometric Semantic Mapping [7.332652485849632]
This study aims to realize a hierarchical spatial representation using a topometric semantic map and path planning with speech instructions, including waypoints.
We conducted experiments in home environments using the Toyota Human Support Robot on the SIGVerse simulator and in a lab-office environment with the real robot, Albert.
Navigation experiments using speech instructions with a waypoint demonstrated a performance improvement of SpCoTMHP over the baseline hierarchical path planning method with path costs.
arXiv Detail & Related papers (2022-03-21T09:15:25Z) - SABER: Data-Driven Motion Planner for Autonomously Navigating
Heterogeneous Robots [112.2491765424719]
We present an end-to-end online motion planning framework that uses a data-driven approach to navigate a heterogeneous robot team towards a global goal.
We use model predictive control (SMPC) to calculate control inputs that satisfy robot dynamics, and consider uncertainty during obstacle avoidance with chance constraints.
recurrent neural networks are used to provide a quick estimate of future state uncertainty considered in the SMPC finite-time horizon solution.
A Deep Q-learning agent is employed to serve as a high-level path planner, providing the SMPC with target positions that move the robots towards a desired global goal.
arXiv Detail & Related papers (2021-08-03T02:56:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.