SCoTT: Strategic Chain-of-Thought Tasking for Wireless-Aware Robot Navigation in Digital Twins
- URL: http://arxiv.org/abs/2411.18212v2
- Date: Thu, 29 May 2025 13:45:00 GMT
- Title: SCoTT: Strategic Chain-of-Thought Tasking for Wireless-Aware Robot Navigation in Digital Twins
- Authors: Aladin Djuhera, Amin Seffo, Vlad C. Andrei, Holger Boche, Walid Saad,
- Abstract summary: We propose SCoTT, a wireless-aware path planning framework.<n>We show that SCoTT achieves path gains within 2% of DP-WA* while consistently generating shorter trajectories.<n>We also show the practical viability of our approach by deploying SCoTT as a ROS node within Gazebo simulations.
- Score: 78.53885607559958
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Path planning under wireless performance constraints is a complex challenge in robot navigation. However, naively incorporating such constraints into classical planning algorithms often incurs prohibitive search costs. In this paper, we propose SCoTT, a wireless-aware path planning framework that leverages vision-language models (VLMs) to co-optimize average path gains and trajectory length using wireless heatmap images and ray-tracing data from a digital twin (DT). At the core of our framework is Strategic Chain-of-Thought Tasking (SCoTT), a novel prompting paradigm that decomposes the exhaustive search problem into structured subtasks, each solved via chain-of-thought prompting. To establish strong baselines, we compare classical A* and wireless-aware extensions of it, and derive DP-WA*, an optimal, iterative dynamic programming algorithm that incorporates all path gains and distance metrics from the DT, but at significant computational cost. In extensive experiments, we show that SCoTT achieves path gains within 2% of DP-WA* while consistently generating shorter trajectories. Moreover, SCoTT's intermediate outputs can be used to accelerate DP-WA* by reducing its search space, saving up to 62% in execution time. We validate our framework using four VLMs, demonstrating effectiveness across both large and small models, thus making it applicable to a wide range of compact models at low inference cost. We also show the practical viability of our approach by deploying SCoTT as a ROS node within Gazebo simulations. Finally, we discuss data acquisition pipelines, compute requirements, and deployment considerations for VLMs in 6G-enabled DTs, underscoring the potential of natural language interfaces for wireless-aware navigation in real-world applications.
Related papers
- Handover and SINR-Aware Path Optimization in 5G-UAV mmWave Communication using DRL [0.5315148938765306]
We propose a novel model-free actor-critic deep reinforcement learning (AC-DRL) framework for path optimization in UAV-assisted 5G mmWave wireless networks.<n>We train an AC-RL agent that enables a UAV connected to a gNB to determine the optimal path to a desired destination in the shortest possible time.
arXiv Detail & Related papers (2025-04-03T15:28:04Z) - FusionLLM: A Decentralized LLM Training System on Geo-distributed GPUs with Adaptive Compression [55.992528247880685]
Decentralized training faces significant challenges regarding system design and efficiency.
We present FusionLLM, a decentralized training system designed and implemented for training large deep neural networks (DNNs)
We show that our system and method can achieve 1.45 - 9.39x speedup compared to baseline methods while ensuring convergence.
arXiv Detail & Related papers (2024-10-16T16:13:19Z) - A Distance Similarity-based Genetic Optimization Algorithm for Satellite Ground Network Planning Considering Feeding Mode [53.71516191515285]
The low transmission efficiency of the satellite data relay back mission has become a problem that is currently constraining the construction of the system.
We propose a distance similarity-based genetic optimization algorithm (DSGA), which considers the state characteristics between the tasks and introduces a weighted Euclidean distance method to determine the similarity between the tasks.
arXiv Detail & Related papers (2024-08-29T06:57:45Z) - A Meta-Engine Framework for Interleaved Task and Motion Planning using Topological Refinements [51.54559117314768]
Task And Motion Planning (TAMP) is the problem of finding a solution to an automated planning problem.
We propose a general and open-source framework for modeling and benchmarking TAMP problems.
We introduce an innovative meta-technique to solve TAMP problems involving moving agents and multiple task-state-dependent obstacles.
arXiv Detail & Related papers (2024-08-11T14:57:57Z) - LLM-A*: Large Language Model Enhanced Incremental Heuristic Search on Path Planning [91.95362946266577]
Path planning is a fundamental scientific problem in robotics and autonomous navigation.
Traditional algorithms like A* and its variants are capable of ensuring path validity but suffer from significant computational and memory inefficiencies as the state space grows.
We propose a new LLM based route planning method that synergistically combines the precise pathfinding capabilities of A* with the global reasoning capability of LLMs.
This hybrid approach aims to enhance pathfinding efficiency in terms of time and space complexity while maintaining the integrity of path validity, especially in large-scale scenarios.
arXiv Detail & Related papers (2024-06-20T01:24:30Z) - Cross-domain Learning Framework for Tracking Users in RIS-aided Multi-band ISAC Systems with Sparse Labeled Data [55.70071704247794]
Integrated sensing and communications (ISAC) is pivotal for 6G communications and is boosted by the rapid development of reconfigurable intelligent surfaces (RISs)
This paper proposes the X2Track framework, where we model the tracking function by a hierarchical architecture, jointly utilizing multi-modal CSI indicators across multiple bands, and optimize it in a cross-domain manner.
Under X2Track, we design an efficient deep learning algorithm to minimize tracking errors, based on transformer neural networks and adversarial learning techniques.
arXiv Detail & Related papers (2024-05-10T08:04:27Z) - Exploring Dynamic Transformer for Efficient Object Tracking [58.120191254379854]
We propose DyTrack, a dynamic transformer framework for efficient tracking.<n>DyTrack automatically learns to configure proper reasoning routes for various inputs, gaining better utilization of the available computational budget.<n>Experiments on multiple benchmarks demonstrate that DyTrack achieves promising speed-precision trade-offs with only a single model.
arXiv Detail & Related papers (2024-03-26T12:31:58Z) - Vertex-based Networks to Accelerate Path Planning Algorithms [3.684936338492373]
We propose the utilization of vertices-based networks to enhance the sampling process of RRT*, leading to more efficient path planning.
We employ focal loss to address the associated data imbalance issue, and explore different masking configurations to determine practical tradeoffs in system performance.
arXiv Detail & Related papers (2023-07-13T20:56:46Z) - Deep Reinforcement Learning for Trajectory Path Planning and Distributed
Inference in Resource-Constrained UAV Swarms [6.649753747542209]
This work aims to design a model for distributed collaborative inference requests and path planning in a UAV swarm.
The formulated problem is NP-hard so finding the optimal solution is quite complex.
We conduct extensive simulations and compare our results to the-state-of-the-art studies demonstrating that our model outperforms the competing models.
arXiv Detail & Related papers (2022-12-21T17:16:42Z) - Universal Neural Optimal Transport [0.0]
UNOT (Universal Neural Optimal Transport) is a novel framework capable of accurately predicting (entropic) OT distances and plans between discrete measures for a given cost function.<n>We show that our network can be used as a state-of-the-art initialization for the Sinkhorn algorithm with speedups of up to $7.4times$.
arXiv Detail & Related papers (2022-11-30T21:56:09Z) - Pervasive Machine Learning for Smart Radio Environments Enabled by
Reconfigurable Intelligent Surfaces [56.35676570414731]
The emerging technology of Reconfigurable Intelligent Surfaces (RISs) is provisioned as an enabler of smart wireless environments.
RISs offer a highly scalable, low-cost, hardware-efficient, and almost energy-neutral solution for dynamic control of the propagation of electromagnetic signals over the wireless medium.
One of the major challenges with the envisioned dense deployment of RISs in such reconfigurable radio environments is the efficient configuration of multiple metasurfaces.
arXiv Detail & Related papers (2022-05-08T06:21:33Z) - Semantic-Aware Collaborative Deep Reinforcement Learning Over Wireless
Cellular Networks [82.02891936174221]
Collaborative deep reinforcement learning (CDRL) algorithms in which multiple agents can coordinate over a wireless network is a promising approach.
In this paper, a novel semantic-aware CDRL method is proposed to enable a group of untrained agents with semantically-linked DRL tasks to collaborate efficiently across a resource-constrained wireless cellular network.
arXiv Detail & Related papers (2021-11-23T18:24:47Z) - Trajectory Design for UAV-Based Internet-of-Things Data Collection: A
Deep Reinforcement Learning Approach [93.67588414950656]
In this paper, we investigate an unmanned aerial vehicle (UAV)-assisted Internet-of-Things (IoT) system in a 3D environment.
We present a TD3-based trajectory design for completion time minimization (TD3-TDCTM) algorithm.
Our simulation results show the superiority of the proposed TD3-TDCTM algorithm over three conventional non-learning based baseline methods.
arXiv Detail & Related papers (2021-07-23T03:33:29Z) - Jamming-Resilient Path Planning for Multiple UAVs via Deep Reinforcement
Learning [1.2330326247154968]
Unmanned aerial vehicles (UAVs) are expected to be an integral part of wireless networks.
In this paper, we aim to find collision-free paths for multiple cellular-connected UAVs.
We propose an offline temporal difference (TD) learning algorithm with online signal-to-interference-plus-noise ratio mapping to solve the problem.
arXiv Detail & Related papers (2021-04-09T16:52:33Z) - Deep Policy Dynamic Programming for Vehicle Routing Problems [89.96386273895985]
We propose Deep Policy Dynamic Programming (D PDP) to combine the strengths of learned neurals with those of dynamic programming algorithms.
D PDP prioritizes and restricts the DP state space using a policy derived from a deep neural network, which is trained to predict edges from example solutions.
We evaluate our framework on the travelling salesman problem (TSP) and the vehicle routing problem (VRP) and show that the neural policy improves the performance of (restricted) DP algorithms.
arXiv Detail & Related papers (2021-02-23T15:33:57Z) - Distributed Multi-agent Meta Learning for Trajectory Design in Wireless
Drone Networks [151.27147513363502]
This paper studies the problem of the trajectory design for a group of energyconstrained drones operating in dynamic wireless network environments.
A value based reinforcement learning (VDRL) solution and a metatraining mechanism is proposed.
arXiv Detail & Related papers (2020-12-06T01:30:12Z) - Trajectory Planning for Autonomous Vehicles Using Hierarchical
Reinforcement Learning [21.500697097095408]
Planning safe trajectories under uncertain and dynamic conditions makes the autonomous driving problem significantly complex.
Current sampling-based methods such as Rapidly Exploring Random Trees (RRTs) are not ideal for this problem because of the high computational cost.
We propose a Hierarchical Reinforcement Learning structure combined with a Proportional-Integral-Derivative (PID) controller for trajectory planning.
arXiv Detail & Related papers (2020-11-09T20:49:54Z) - Multi-UAV Path Planning for Wireless Data Harvesting with Deep
Reinforcement Learning [18.266087952180733]
We propose a multi-agent reinforcement learning (MARL) approach that can adapt to profound changes in the scenario parameters defining the data harvesting mission.
We show that our proposed network architecture enables the agents to cooperate effectively by carefully dividing the data collection task among themselves.
arXiv Detail & Related papers (2020-10-23T14:59:30Z) - Flexible and Efficient Long-Range Planning Through Curious Exploration [13.260508939271764]
We show that the Curious Sample Planner can efficiently discover temporally-extended plans for solving a wide range of physically realistic 3D tasks.
In contrast, standard planning and learning methods often fail to solve these tasks at all or do so only with a huge and highly variable number of training samples.
arXiv Detail & Related papers (2020-04-22T21:47:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.