Multi-Scale Graph Learning for Anti-Sparse Downscaling
- URL: http://arxiv.org/abs/2505.01948v1
- Date: Sat, 03 May 2025 23:52:08 GMT
- Title: Multi-Scale Graph Learning for Anti-Sparse Downscaling
- Authors: Yingda Fan, Runlong Yu, Janet R. Barclay, Alison P. Appling, Yiming Sun, Yiqun Xie, Xiaowei Jia,
- Abstract summary: Accurate prediction of stream water temperature at fine spatial resolutions enables precise interventions to maintain water quality and protect aquatic habitats.<n>To address the problem of insufficient fine-scale data, we propose a Multi-Scale Graph Learning (MSGL) method.
- Score: 15.413508055175955
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Water temperature can vary substantially even across short distances within the same sub-watershed. Accurate prediction of stream water temperature at fine spatial resolutions (i.e., fine scales, $\leq$ 1 km) enables precise interventions to maintain water quality and protect aquatic habitats. Although spatiotemporal models have made substantial progress in spatially coarse time series modeling, challenges persist in predicting at fine spatial scales due to the lack of data at that scale.To address the problem of insufficient fine-scale data, we propose a Multi-Scale Graph Learning (MSGL) method. This method employs a multi-task learning framework where coarse-scale graph learning, bolstered by larger datasets, simultaneously enhances fine-scale graph learning. Although existing multi-scale or multi-resolution methods integrate data from different spatial scales, they often overlook the spatial correspondences across graph structures at various scales. To address this, our MSGL introduces an additional learning task, cross-scale interpolation learning, which leverages the hydrological connectedness of stream locations across coarse- and fine-scale graphs to establish cross-scale connections, thereby enhancing overall model performance. Furthermore, we have broken free from the mindset that multi-scale learning is limited to synchronous training by proposing an Asynchronous Multi-Scale Graph Learning method (ASYNC-MSGL). Extensive experiments demonstrate the state-of-the-art performance of our method for anti-sparse downscaling of daily stream temperatures in the Delaware River Basin, USA, highlighting its potential utility for water resources monitoring and management.
Related papers
- Fusing CFD and measurement data using transfer learning [49.1574468325115]
We introduce a non-linear method based on neural networks combining simulation and measurement data via transfer learning.<n>In a first step, the neural network is trained on simulation data to learn spatial features of the distributed quantities.<n>The second step involves transfer learning on the measurement data to correct for systematic errors between simulation and measurement by only re-training a small subset of the entire neural network model.
arXiv Detail & Related papers (2025-07-28T07:21:46Z) - On the use of Graphs for Satellite Image Time Series [3.2623791881739033]
This paper is an effort to examine the integration of graph-based methods in remote-sensing analysis.<n>It aims to present a versatile graph-based pipeline to tackle SITS analysis.<n>The paper includes a review and two case studies, which highlight the potential of graph-based approaches for land cover mapping and water forecasting datasets.
arXiv Detail & Related papers (2025-05-22T13:53:36Z) - Conservation-informed Graph Learning for Spatiotemporal Dynamics Prediction [84.26340606752763]
In this paper, we introduce the conservation-informed GNN (CiGNN), an end-to-end explainable learning framework.<n>The network is designed to conform to the general symmetry conservation law via symmetry where conservative and non-conservative information passes over a multiscale space by a latent temporal marching strategy.<n>Results demonstrate that CiGNN exhibits remarkable baseline accuracy and generalizability, and is readily applicable to learning for prediction of varioustemporal dynamics.
arXiv Detail & Related papers (2024-12-30T13:55:59Z) - TransGlow: Attention-augmented Transduction model based on Graph Neural
Networks for Water Flow Forecasting [4.915744683251151]
Hydrometric prediction of water quantity is useful for a variety of applications, including water management, flood forecasting, and flood control.
We propose atemporal forecasting model that augments the hidden state in Graph Convolution Recurrent Neural Network (GCRN) encoder-decoder.
We present a new benchmark dataset of water flow from a network of Canadian stations on rivers, streams, and lakes.
arXiv Detail & Related papers (2023-12-10T18:23:40Z) - SAMSGL: Series-Aligned Multi-Scale Graph Learning for Spatio-Temporal Forecasting [9.013416216828361]
We present a Series-Aligned Multi-Scale Graph Learning (SGL) framework, aiming to enhance forecasting performance.
In this work, we propose a series-aligned graph layer to facilitate the aggregation of non-delayed graph signals.
We conduct experiments on meteorological and traffic forecasting datasets, which demonstrate its effectiveness and superiority.
arXiv Detail & Related papers (2023-12-05T10:37:54Z) - Correlation-aware Spatial-Temporal Graph Learning for Multivariate
Time-series Anomaly Detection [67.60791405198063]
We propose a correlation-aware spatial-temporal graph learning (termed CST-GL) for time series anomaly detection.
CST-GL explicitly captures the pairwise correlations via a multivariate time series correlation learning module.
A novel anomaly scoring component is further integrated into CST-GL to estimate the degree of an anomaly in a purely unsupervised manner.
arXiv Detail & Related papers (2023-07-17T11:04:27Z) - Automated Spatio-Temporal Graph Contrastive Learning [18.245433428868775]
We develop an automated-temporal augmentation scheme with a parameterized contrastive view generator.
AutoST can adapt to the heterogeneous graph with multi-view semantics well preserved.
Experiments for three downstream-temporal mining tasks on several real-world datasets demonstrate the significant performance gain.
arXiv Detail & Related papers (2023-05-06T03:52:33Z) - Eagle: Large-Scale Learning of Turbulent Fluid Dynamics with Mesh
Transformers [23.589419066824306]
Estimating fluid dynamics is a notoriously hard problem to solve.
We introduce a new model, method and benchmark for the problem.
We show that our transformer outperforms state-of-the-art performance on, both, existing synthetic and real datasets.
arXiv Detail & Related papers (2023-02-16T12:59:08Z) - Spatio-Temporal Graph Few-Shot Learning with Cross-City Knowledge
Transfer [58.6106391721944]
Cross-city knowledge has shown its promise, where the model learned from data-sufficient cities is leveraged to benefit the learning process of data-scarce cities.
We propose a model-agnostic few-shot learning framework for S-temporal graph called ST-GFSL.
We conduct comprehensive experiments on four traffic speed prediction benchmarks and the results demonstrate the effectiveness of ST-GFSL compared with state-of-the-art methods.
arXiv Detail & Related papers (2022-05-27T12:46:52Z) - Towards Scale Consistent Monocular Visual Odometry by Learning from the
Virtual World [83.36195426897768]
We propose VRVO, a novel framework for retrieving the absolute scale from virtual data.
We first train a scale-aware disparity network using both monocular real images and stereo virtual data.
The resulting scale-consistent disparities are then integrated with a direct VO system.
arXiv Detail & Related papers (2022-03-11T01:51:54Z) - Distributionally Robust Semi-Supervised Learning Over Graphs [68.29280230284712]
Semi-supervised learning (SSL) over graph-structured data emerges in many network science applications.
To efficiently manage learning over graphs, variants of graph neural networks (GNNs) have been developed recently.
Despite their success in practice, most of existing methods are unable to handle graphs with uncertain nodal attributes.
Challenges also arise due to distributional uncertainties associated with data acquired by noisy measurements.
A distributionally robust learning framework is developed, where the objective is to train models that exhibit quantifiable robustness against perturbations.
arXiv Detail & Related papers (2021-10-20T14:23:54Z) - Disentangling and Unifying Graph Convolutions for Skeleton-Based Action
Recognition [79.33539539956186]
We propose a simple method to disentangle multi-scale graph convolutions and a unified spatial-temporal graph convolutional operator named G3D.
By coupling these proposals, we develop a powerful feature extractor named MS-G3D based on which our model outperforms previous state-of-the-art methods on three large-scale datasets.
arXiv Detail & Related papers (2020-03-31T11:28:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.