TransGlow: Attention-augmented Transduction model based on Graph Neural
Networks for Water Flow Forecasting
- URL: http://arxiv.org/abs/2312.05961v1
- Date: Sun, 10 Dec 2023 18:23:40 GMT
- Title: TransGlow: Attention-augmented Transduction model based on Graph Neural
Networks for Water Flow Forecasting
- Authors: Naghmeh Shafiee Roudbari, Charalambos Poullis, Zachary Patterson,
Ursula Eicker
- Abstract summary: Hydrometric prediction of water quantity is useful for a variety of applications, including water management, flood forecasting, and flood control.
We propose atemporal forecasting model that augments the hidden state in Graph Convolution Recurrent Neural Network (GCRN) encoder-decoder.
We present a new benchmark dataset of water flow from a network of Canadian stations on rivers, streams, and lakes.
- Score: 4.915744683251151
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The hydrometric prediction of water quantity is useful for a variety of
applications, including water management, flood forecasting, and flood control.
However, the task is difficult due to the dynamic nature and limited data of
water systems. Highly interconnected water systems can significantly affect
hydrometric forecasting. Consequently, it is crucial to develop models that
represent the relationships between other system components. In recent years,
numerous hydrological applications have been studied, including streamflow
prediction, flood forecasting, and water quality prediction. Existing methods
are unable to model the influence of adjacent regions between pairs of
variables. In this paper, we propose a spatiotemporal forecasting model that
augments the hidden state in Graph Convolution Recurrent Neural Network (GCRN)
encoder-decoder using an efficient version of the attention mechanism. The
attention layer allows the decoder to access different parts of the input
sequence selectively. Since water systems are interconnected and the
connectivity information between the stations is implicit, the proposed model
leverages a graph learning module to extract a sparse graph adjacency matrix
adaptively based on the data. Spatiotemporal forecasting relies on historical
data. In some regions, however, historical data may be limited or incomplete,
making it difficult to accurately predict future water conditions. Further, we
present a new benchmark dataset of water flow from a network of Canadian
stations on rivers, streams, and lakes. Experimental results demonstrate that
our proposed model TransGlow significantly outperforms baseline methods by a
wide margin.
Related papers
- Rapid Flood Inundation Forecast Using Fourier Neural Operator [77.30160833875513]
Flood inundation forecast provides critical information for emergency planning before and during flood events.
High-resolution hydrodynamic modeling has become more accessible in recent years, however, predicting flood extents at the street and building levels in real-time is still computationally demanding.
We present a hybrid process-based and data-driven machine learning (ML) approach for flood extent and inundation depth prediction.
arXiv Detail & Related papers (2023-07-29T22:49:50Z) - Fully Convolutional Networks for Dense Water Flow Intensity Prediction
in Swedish Catchment Areas [7.324969824727792]
We propose a machine learning-based approach for predicting water flow intensities in inland watercourses.
We are the first to tackle the task of dense water flow intensity prediction.
arXiv Detail & Related papers (2023-04-04T09:28:36Z) - An evaluation of deep learning models for predicting water depth
evolution in urban floods [59.31940764426359]
We compare different deep learning models for prediction of water depth at high spatial resolution.
Deep learning models are trained to reproduce the data simulated by the CADDIES cellular-automata flood model.
Our results show that the deep learning models present in general lower errors compared to the other methods.
arXiv Detail & Related papers (2023-02-20T16:08:54Z) - A Graph-Based Modeling Framework for Tracing Hydrological Pollutant
Transport in Surface Waters [0.0]
We present a graph modeling framework for understanding pollutant transport and fate across waterbodies, rivers, and watersheds.
The graph representation provides an intuitive approach for capturing connectivity and for identifying upstream pollutant sources.
Our tool ultimately seeks to help stakeholders design effective pollution prevention/mitigation practices.
arXiv Detail & Related papers (2023-02-10T00:30:38Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
Generative Adversarial Imputation Nets (GANs) and GAN-based techniques have attracted attention as unsupervised machine learning methods.
We name our proposed method as Con Conval Generative Adversarial Imputation Nets (Conv-GAIN)
arXiv Detail & Related papers (2021-11-03T03:50:48Z) - Heterogeneous Stream-reservoir Graph Networks with Data Assimilation [3.312798619476657]
Accurate prediction of water temperature in streams is critical for monitoring and understanding biogeochemical and ecological processes in streams.
We propose a heterogeneous recurrent graph model to represent interacting processes that underlie stream-reservoir networks.
Because reservoir release data may be unavailable for certain reservoirs, we develop a data assimilation mechanism to correct for the prediction bias caused by reservoir releases.
arXiv Detail & Related papers (2021-10-11T01:47:16Z) - Predicting traffic signals on transportation networks using
spatio-temporal correlations on graphs [56.48498624951417]
This paper proposes a traffic propagation model that merges multiple heat diffusion kernels into a data-driven prediction model to forecast traffic signals.
We optimize the model parameters using Bayesian inference to minimize the prediction errors and, consequently, determine the mixing ratio of the two approaches.
The proposed model demonstrates prediction accuracy comparable to that of the state-of-the-art deep neural networks with lower computational effort.
arXiv Detail & Related papers (2021-04-27T18:17:42Z) - Inductive Predictions of Extreme Hydrologic Events in The Wabash River
Watershed [15.963061568077567]
We show that our simple model can be trained much faster than complex attention networks such as GeoMAN.
We also demonstrate that extreme events can be predicted in geographical locations separate from locations observed during the training process.
This spatially-inductive setting enables us to predict extreme events in other areas in the US and other parts of the world using our model trained with the Wabash Basin data.
arXiv Detail & Related papers (2021-04-25T02:26:09Z) - Radflow: A Recurrent, Aggregated, and Decomposable Model for Networks of
Time Series [77.47313102926017]
Radflow is a novel model for networks of time series that influence each other.
It embodies three key ideas: a recurrent neural network to obtain node embeddings that depend on time, the aggregation of the flow of influence from neighboring nodes with multi-head attention, and the multi-layer decomposition of time series.
We show that Radflow can learn different trends and seasonal patterns, that it is robust to missing nodes and edges, and that correlated temporal patterns among network neighbors reflect influence strength.
arXiv Detail & Related papers (2021-02-15T00:57:28Z) - HydroNets: Leveraging River Structure for Hydrologic Modeling [0.0]
HydroNets are deep neural network models designed to exploit both basin specific rainfall-runoff signals, and upstream network dynamics.
The injection of the river structure prior knowledge reduces sample complexity and allows for scalable and more accurate hydrologic modeling.
We present an empirical study over two large basins in India that convincingly support the proposed model and its advantages.
arXiv Detail & Related papers (2020-07-01T16:32:07Z) - A Data Scientist's Guide to Streamflow Prediction [55.22219308265945]
We focus on the element of hydrologic rainfall--runoff models and their application to forecast floods and predict streamflow.
This guide aims to help interested data scientists gain an understanding of the problem, the hydrologic concepts involved, and the details that come up along the way.
arXiv Detail & Related papers (2020-06-05T08:04:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.