Training Environment for High Performance Reinforcement Learning
- URL: http://arxiv.org/abs/2505.01953v1
- Date: Sun, 04 May 2025 01:09:15 GMT
- Title: Training Environment for High Performance Reinforcement Learning
- Authors: Greg Search,
- Abstract summary: Tunnel is a reinforcement learning training environment for high performance aircraft.<n>It integrates the F16 3D nonlinear flight dynamics into OpenAI Gymnasium python package.
- Score: 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: This paper presents Tunnel, a simple, open source, reinforcement learning training environment for high performance aircraft. It integrates the F16 3D nonlinear flight dynamics into OpenAI Gymnasium python package. The template includes primitives for boundaries, targets, adversaries and sensing capabilities that may vary depending on operational need. This offers mission planners a means to rapidly respond to evolving environments, sensor capabilities and adversaries for autonomous air combat aircraft. It offers researchers access to operationally relevant aircraft physics. Tunnel code base is accessible to anyone familiar with Gymnasium and/or those with basic python skills. This paper includes a demonstration of a week long trade study that investigated a variety of training methods, observation spaces, and threat presentations. This enables increased collaboration between researchers and mission planners which can translate to a national military advantage. As warfare becomes increasingly reliant upon automation, software agility will correlate with decision advantages. Airmen must have tools to adapt to adversaries in this context. It may take months for researchers to develop skills to customize observation, actions, tasks and training methodologies in air combat simulators. In Tunnel, this can be done in a matter of days.
Related papers
- SPIRE: Synergistic Planning, Imitation, and Reinforcement Learning for Long-Horizon Manipulation [58.14969377419633]
We propose spire, a system that decomposes tasks into smaller learning subproblems and second combines imitation and reinforcement learning to maximize their strengths.
We find that spire outperforms prior approaches that integrate imitation learning, reinforcement learning, and planning by 35% to 50% in average task performance.
arXiv Detail & Related papers (2024-10-23T17:42:07Z) - An Imitative Reinforcement Learning Framework for Autonomous Dogfight [18.782465158163543]
Unmanned Combat Aerial Vehicle (UCAV) dogfight plays a decisive role on the aerial battlefields.<n>This paper proposes a novel imitative reinforcement learning framework, which efficiently leverages expert data while enabling autonomous exploration.<n>The proposed framework can learn a successful dogfight policy of 'pursuit-lock-launch' for UCAVs.
arXiv Detail & Related papers (2024-06-17T13:59:52Z) - TempFuser: Learning Agile, Tactical, and Acrobatic Flight Maneuvers Using a Long Short-Term Temporal Fusion Transformer [2.163881720692685]
TempFuser is a novel long short-term temporal fusion transformer architecture.
It can learn agile, tactical, and acrobatic flight maneuvers in complex dogfight problems.
Our model exhibits human-like acrobatic maneuvers even when facing adversaries with superior specifications.
arXiv Detail & Related papers (2023-08-07T02:28:31Z) - Rethinking Closed-loop Training for Autonomous Driving [82.61418945804544]
We present the first empirical study which analyzes the effects of different training benchmark designs on the success of learning agents.
We propose trajectory value learning (TRAVL), an RL-based driving agent that performs planning with multistep look-ahead.
Our experiments show that TRAVL can learn much faster and produce safer maneuvers compared to all the baselines.
arXiv Detail & Related papers (2023-06-27T17:58:39Z) - Learning and Adapting Agile Locomotion Skills by Transferring Experience [71.8926510772552]
We propose a framework for training complex robotic skills by transferring experience from existing controllers to jumpstart learning new tasks.
We show that our method enables learning complex agile jumping behaviors, navigating to goal locations while walking on hind legs, and adapting to new environments.
arXiv Detail & Related papers (2023-04-19T17:37:54Z) - Autonomous Agent for Beyond Visual Range Air Combat: A Deep
Reinforcement Learning Approach [0.2578242050187029]
This work contributes to developing an agent based on deep reinforcement learning capable of acting in a beyond visual range (BVR) air combat simulation environment.
The paper presents an overview of building an agent representing a high-performance fighter aircraft that can learn and improve its role in BVR combat over time.
It also hopes to examine a real pilot's ability, using virtual simulation, to interact in the same environment with the trained agent and compare their performances.
arXiv Detail & Related papers (2023-04-19T13:54:37Z) - Self-Inspection Method of Unmanned Aerial Vehicles in Power Plants Using
Deep Q-Network Reinforcement Learning [0.0]
The research proposes a power plant inspection system incorporating UAV autonomous navigation and DQN reinforcement learning.
The trained model makes it more likely that the inspection strategy will be applied in practice by enabling the UAV to move around on its own in difficult environments.
arXiv Detail & Related papers (2023-03-16T00:58:50Z) - The eyes and hearts of UAV pilots: observations of physiological
responses in real-life scenarios [64.0476282000118]
In civil and military aviation, pilots can train themselves on realistic simulators to tune their reaction and reflexes.
This work aims to provide a solution to gather pilots behavior out in the field and help them increase their performance.
arXiv Detail & Related papers (2022-10-26T14:16:56Z) - Harfang3D Dog-Fight Sandbox: A Reinforcement Learning Research Platform
for the Customized Control Tasks of Fighter Aircrafts [0.0]
We present a semi-realistic flight simulation environment Harfang3D Dog-Fight Sandbox for fighter aircrafts.
It is aimed to be a flexible toolbox for the investigation of main challenges in aviation studies using Reinforcement Learning.
Software also allows deployment of bot aircrafts and development of multi-agent tasks.
arXiv Detail & Related papers (2022-10-13T18:18:09Z) - Automating Privilege Escalation with Deep Reinforcement Learning [71.87228372303453]
In this work, we exemplify the potential threat of malicious actors using deep reinforcement learning to train automated agents.
We present an agent that uses a state-of-the-art reinforcement learning algorithm to perform local privilege escalation.
Our agent is usable for generating realistic attack sensor data for training and evaluating intrusion detection systems.
arXiv Detail & Related papers (2021-10-04T12:20:46Z) - Emergent Real-World Robotic Skills via Unsupervised Off-Policy
Reinforcement Learning [81.12201426668894]
We develop efficient reinforcement learning methods that acquire diverse skills without any reward function, and then repurpose these skills for downstream tasks.
We show that our proposed algorithm provides substantial improvement in learning efficiency, making reward-free real-world training feasible.
We also demonstrate that the learned skills can be composed using model predictive control for goal-oriented navigation, without any additional training.
arXiv Detail & Related papers (2020-04-27T17:38:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.