SafeNav: Safe Path Navigation using Landmark Based Localization in a GPS-denied Environment
- URL: http://arxiv.org/abs/2505.01956v2
- Date: Tue, 13 May 2025 21:56:50 GMT
- Title: SafeNav: Safe Path Navigation using Landmark Based Localization in a GPS-denied Environment
- Authors: Ganesh Sapkota, Sanjay Madria,
- Abstract summary: LanBLoc-BMM is a navigation approach using landmark-based localization (LanBLoc) combined with a battlefield-specific motion model (BMM) and Extended Kalman Filter (EKF)<n>Its performance is benchmarked against three state-of-the-art visual localization algorithms integrated with BMM and Bayesian filters.<n>Two safe navigation methods, SafeNav-CHull and SafeNav-Centroid, are introduced by integrating LanBLoc-BMM with a novel Risk-Aware RRT* (RAw-RRT*) algorithm for obstacle avoidance and risk exposure minimization.
- Score: 1.0128808054306186
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In battlefield environments, adversaries frequently disrupt GPS signals, requiring alternative localization and navigation methods. Traditional vision-based approaches like Simultaneous Localization and Mapping (SLAM) and Visual Odometry (VO) involve complex sensor fusion and high computational demand, whereas range-free methods like DV-HOP face accuracy and stability challenges in sparse, dynamic networks. This paper proposes LanBLoc-BMM, a navigation approach using landmark-based localization (LanBLoc) combined with a battlefield-specific motion model (BMM) and Extended Kalman Filter (EKF). Its performance is benchmarked against three state-of-the-art visual localization algorithms integrated with BMM and Bayesian filters, evaluated on synthetic and real-imitated trajectory datasets using metrics including Average Displacement Error (ADE), Final Displacement Error (FDE), and a newly introduced Average Weighted Risk Score (AWRS). LanBLoc-BMM (with EKF) demonstrates superior performance in ADE, FDE, and AWRS on real-imitated datasets. Additionally, two safe navigation methods, SafeNav-CHull and SafeNav-Centroid, are introduced by integrating LanBLoc-BMM(EKF) with a novel Risk-Aware RRT* (RAw-RRT*) algorithm for obstacle avoidance and risk exposure minimization. Simulation results in battlefield scenarios indicate SafeNav-Centroid excels in accuracy, risk exposure, and trajectory efficiency, while SafeNav-CHull provides superior computational speed.
Related papers
- NOVA: Navigation via Object-Centric Visual Autonomy for High-Speed Target Tracking in Unstructured GPS-Denied Environments [56.35569661650558]
We introduce NOVA, a fully onboard, object-centric framework that enables robust target tracking and collision-aware navigation.<n>Rather than constructing a global map, NOVA formulates perception, estimation, and control entirely in the target's reference frame.<n>We validate NOVA across challenging real-world scenarios, including urban mazes, forest trails, and repeated transitions through buildings with intermittent GPS loss.
arXiv Detail & Related papers (2025-06-23T14:28:30Z) - ASMA: An Adaptive Safety Margin Algorithm for Vision-Language Drone Navigation via Scene-Aware Control Barrier Functions [9.645098673995317]
We consider a VLN-operated drone platform and enhance its safety by formulating a novel scene-aware CBF.<n>A CBF-less baseline system uses a Vision-Language with cross-modal attention to convert commands into an ordered sequence of landmarks.<n>ASMA tracks moving objects and performs scene-aware CBF evaluation on-the-fly, which serves as an additional constraint.
arXiv Detail & Related papers (2024-09-16T13:44:50Z) - Secure Navigation using Landmark-based Localization in a GPS-denied
Environment [1.19658449368018]
This paper proposes a novel framework that integrates landmark-based localization (LanBLoc) with an Extended Kalman Filter (EKF) to predict the future state of moving entities along the battlefield.
We present a simulated battlefield scenario for two different approaches that guide a moving entity through an obstacle and hazard-free path.
arXiv Detail & Related papers (2024-02-22T04:41:56Z) - Landmark-based Localization using Stereo Vision and Deep Learning in
GPS-Denied Battlefield Environment [1.19658449368018]
This paper proposes a novel framework for localization in non-GPS battlefield environments using only the passive camera sensors.
The proposed method utilizes a customcalibrated stereo vision camera for distance estimation and the YOLOv8s model, which is trained and fine-tuned with our real-world dataset for landmark recognition.
Experimental results demonstrate that our proposed framework performs better than existing anchorbased DV-Hop algorithms and competes with the most efficient vision-based algorithms in terms of localization error (RMSE)
arXiv Detail & Related papers (2024-02-19T21:20:56Z) - A Bionic Data-driven Approach for Long-distance Underwater Navigation with Anomaly Resistance [59.21686775951903]
Various animals exhibit accurate navigation using environment cues.
Inspired by animal navigation, this work proposes a bionic and data-driven approach for long-distance underwater navigation.
The proposed approach uses measured geomagnetic data for the navigation, and requires no GPS systems or geographical maps.
arXiv Detail & Related papers (2024-02-06T13:20:56Z) - Efficient Real-time Smoke Filtration with 3D LiDAR for Search and Rescue
with Autonomous Heterogeneous Robotic Systems [56.838297900091426]
Smoke and dust affect the performance of any mobile robotic platform due to their reliance on onboard perception systems.
This paper proposes a novel modular computation filtration pipeline based on intensity and spatial information.
arXiv Detail & Related papers (2023-08-14T16:48:57Z) - Confidence-Controlled Exploration: Efficient Sparse-Reward Policy Learning for Robot Navigation [72.24964965882783]
Reinforcement learning (RL) is a promising approach for robotic navigation, allowing robots to learn through trial and error.<n>Real-world robotic tasks often suffer from sparse rewards, leading to inefficient exploration and suboptimal policies.<n>We introduce Confidence-Controlled Exploration (CCE), a novel method that improves sample efficiency in RL-based robotic navigation without modifying the reward function.
arXiv Detail & Related papers (2023-06-09T18:45:15Z) - Unsupervised Visual Odometry and Action Integration for PointGoal
Navigation in Indoor Environment [14.363948775085534]
PointGoal navigation in indoor environment is a fundamental task for personal robots to navigate to a specified point.
To improve the PointGoal navigation accuracy without GPS signal, we use visual odometry (VO) and propose a novel action integration module (AIM) trained in unsupervised manner.
Experiments show that the proposed system achieves satisfactory results and outperforms the partially supervised learning algorithms on the popular Gibson dataset.
arXiv Detail & Related papers (2022-10-02T03:12:03Z) - Reinforcement Learning for Robot Navigation with Adaptive Forward
Simulation Time (AFST) in a Semi-Markov Model [20.91419349793292]
We propose the first DRL-based navigation method modeled by a semi-Markov decision process (SMDP) with continuous action space, named Adaptive Forward Time Simulation (AFST) to overcome this problem.
arXiv Detail & Related papers (2021-08-13T10:30:25Z) - Real-time Outdoor Localization Using Radio Maps: A Deep Learning
Approach [59.17191114000146]
LocUNet: A convolutional, end-to-end trained neural network (NN) for the localization task.
We show that LocUNet can localize users with state-of-the-art accuracy and enjoys high robustness to inaccuracies in the estimations of radio maps.
arXiv Detail & Related papers (2021-06-23T17:27:04Z) - GANav: Group-wise Attention Network for Classifying Navigable Regions in
Unstructured Outdoor Environments [54.21959527308051]
We present a new learning-based method for identifying safe and navigable regions in off-road terrains and unstructured environments from RGB images.
Our approach consists of classifying groups of terrain classes based on their navigability levels using coarse-grained semantic segmentation.
We show through extensive evaluations on the RUGD and RELLIS-3D datasets that our learning algorithm improves the accuracy of visual perception in off-road terrains for navigation.
arXiv Detail & Related papers (2021-03-07T02:16:24Z) - Risk-Averse MPC via Visual-Inertial Input and Recurrent Networks for
Online Collision Avoidance [95.86944752753564]
We propose an online path planning architecture that extends the model predictive control (MPC) formulation to consider future location uncertainties.
Our algorithm combines an object detection pipeline with a recurrent neural network (RNN) which infers the covariance of state estimates.
The robustness of our methods is validated on complex quadruped robot dynamics and can be generally applied to most robotic platforms.
arXiv Detail & Related papers (2020-07-28T07:34:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.