A Comprehensive Analysis for Visual Object Hallucination in Large Vision-Language Models
- URL: http://arxiv.org/abs/2505.01958v1
- Date: Sun, 04 May 2025 01:47:58 GMT
- Title: A Comprehensive Analysis for Visual Object Hallucination in Large Vision-Language Models
- Authors: Liqiang Jing, Guiming Hardy Chen, Ehsan Aghazadeh, Xin Eric Wang, Xinya Du,
- Abstract summary: Vision-Language Models (LVLMs) demonstrate remarkable capabilities in multimodal tasks.<n>LVLMs generate inaccurate visual object-related information based on the query input, potentially leading to misinformation and concerns about safety and reliability.<n>In this paper, we analyze each component of LLaVA-like LVLMs to identify potential sources of error and their impact.
- Score: 30.037505914306504
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Vision-Language Models (LVLMs) demonstrate remarkable capabilities in multimodal tasks, but visual object hallucination remains a persistent issue. It refers to scenarios where models generate inaccurate visual object-related information based on the query input, potentially leading to misinformation and concerns about safety and reliability. Previous works focus on the evaluation and mitigation of visual hallucinations, but the underlying causes have not been comprehensively investigated. In this paper, we analyze each component of LLaVA-like LVLMs -- the large language model, the vision backbone, and the projector -- to identify potential sources of error and their impact. Based on our observations, we propose methods to mitigate hallucination for each problematic component. Additionally, we developed two hallucination benchmarks: QA-VisualGenome, which emphasizes attribute and relation hallucinations, and QA-FB15k, which focuses on cognition-based hallucinations.
Related papers
- Mitigating Low-Level Visual Hallucinations Requires Self-Awareness: Database, Model and Training Strategy [53.07517728420411]
We introduce the first instruction database specifically focused on hallucinations in low-level vision tasks.<n>We propose the Self-Awareness Failure Elimination (SAFEQA) model to improve the perception and comprehension abilities of the model in low-level vision tasks.<n>We conduct comprehensive experiments on low-level vision tasks, with the results demonstrating that our proposed method significantly enhances self-awareness of the model in these tasks and reduces hallucinations.
arXiv Detail & Related papers (2025-03-26T16:05:01Z) - Towards a Systematic Evaluation of Hallucinations in Large-Vision Language Models [57.58426038241812]
Large Vision-Language Models (LVLMs) have demonstrated remarkable performance in complex multimodal tasks.<n>These models still suffer from hallucinations when required to implicitly recognize or infer diverse visual entities from images.<n>We propose a novel visual question answering (VQA) benchmark that employs contextual reasoning prompts as hallucination attacks.
arXiv Detail & Related papers (2024-12-29T23:56:01Z) - From Pixels to Tokens: Revisiting Object Hallucinations in Large Vision-Language Models [15.401221354325672]
Hallucinations in large vision models (LVLMs) are a significant challenge, i.e., generating objects that are not presented in the visual input.
Recent studies often attribute hallucinations to a lack of understanding of visual input, yet ignore a more fundamental issue: the model's inability to extract or decouple visual features.
In this paper, we revisit the hallucinations in LVLMs from an architectural perspective, investigating whether the primary cause lies in the visual encoder (feature extraction) or the modal alignment module (feature decoupling)
arXiv Detail & Related papers (2024-10-09T11:46:32Z) - Multi-Object Hallucination in Vision-Language Models [28.135215173793785]
Large vision language models (LVLMs) often suffer from object hallucination.
Hallucinatory behaviors are influenced by data-specific factors, salience and frequency, and intrinsic model behaviors.
arXiv Detail & Related papers (2024-07-08T17:59:57Z) - Quantity Matters: Towards Assessing and Mitigating Number Hallucination in Large Vision-Language Models [57.42800112251644]
We focus on a specific type of hallucination-number hallucination, referring to models incorrectly identifying the number of certain objects in pictures.
We devise a training approach aimed at improving consistency to reduce number hallucinations, which leads to an 8% enhancement in performance over direct finetuning methods.
arXiv Detail & Related papers (2024-03-03T02:31:11Z) - Negative Object Presence Evaluation (NOPE) to Measure Object Hallucination in Vision-Language Models [67.8024390595066]
NOPE (Negative Object Presence Evaluation) is a novel benchmark designed to assess object hallucination in vision-language (VL) models.
We extensively investigate the performance of 10 state-of-the-art VL models in discerning the non-existence of objects in visual questions.
arXiv Detail & Related papers (2023-10-09T01:52:27Z) - Analyzing and Mitigating Object Hallucination in Large Vision-Language Models [110.12460299261531]
Large vision-language models (LVLMs) have shown remarkable abilities in understanding visual information with human languages.
LVLMs still suffer from object hallucination, which is the problem of generating descriptions that include objects that do not actually exist in the images.
We propose a powerful algorithm, LVLM Hallucination Revisor (LURE), to rectify object hallucination in LVLMs by reconstructing less hallucinatory descriptions.
arXiv Detail & Related papers (2023-10-01T18:10:53Z) - Plausible May Not Be Faithful: Probing Object Hallucination in
Vision-Language Pre-training [66.0036211069513]
Large-scale vision-language pre-trained models are prone to hallucinate non-existent visual objects when generating text.
We show that models achieving better scores on standard metrics could hallucinate objects more frequently.
Surprisingly, we find that patch-based features perform the best and smaller patch resolution yields a non-trivial reduction in object hallucination.
arXiv Detail & Related papers (2022-10-14T10:27:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.