論文の概要: CASA: CNN Autoencoder-based Score Attention for Efficient Multivariate Long-term Time-series Forecasting
- arxiv url: http://arxiv.org/abs/2505.02011v1
- Date: Sun, 04 May 2025 06:46:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-06 18:49:35.378072
- Title: CASA: CNN Autoencoder-based Score Attention for Efficient Multivariate Long-term Time-series Forecasting
- Title(参考訳): CASA: CNNオートエンコーダを用いた多変量長期予測のためのスコアアテンション
- Authors: Minhyuk Lee, HyeKyung Yoon, MyungJoo Kang,
- Abstract要約: 本稿では,CNNオートエンコーダをベースとしたトランスフォーマー用スコアアテンション機構(CASA)を提案する。
8つの実世界のデータセットの実験では、CASAが計算資源を最大77.7%削減し、推論を44.0%加速し、最先端のパフォーマンスを達成し、評価指標の87.5%にランクインしている。
- 参考スコア(独自算出の注目度): 5.330266804358638
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multivariate long-term time series forecasting is critical for applications such as weather prediction, and traffic analysis. In addition, the implementation of Transformer variants has improved prediction accuracy. Following these variants, different input data process approaches also enhanced the field, such as tokenization techniques including point-wise, channel-wise, and patch-wise tokenization. However, previous studies still have limitations in time complexity, computational resources, and cross-dimensional interactions. To address these limitations, we introduce a novel CNN Autoencoder-based Score Attention mechanism (CASA), which can be introduced in diverse Transformers model-agnosticically by reducing memory and leading to improvement in model performance. Experiments on eight real-world datasets validate that CASA decreases computational resources by up to 77.7%, accelerates inference by 44.0%, and achieves state-of-the-art performance, ranking first in 87.5% of evaluated metrics.
- Abstract(参考訳): 多変量時系列予測は天気予報や交通分析などの応用において重要である。
さらに、Transformer variantの実装により、予測精度が向上した。
これらの変種に続いて、異なる入力データ処理アプローチは、ポイントワイド、チャンネルワイド、パッチワイドトークン化を含むトークン化技術などの分野も強化した。
しかし、これまでの研究では時間的複雑さ、計算資源、二次元相互作用に制限があった。
これらの制約に対処するため,CNN Autoencoderベースのスコアアテンション機構(CASA)を導入する。
8つの実世界のデータセットの実験では、CASAが計算資源を最大77.7%削減し、推論を44.0%加速し、最先端のパフォーマンスを達成し、評価指標の87.5%にランクインしている。
関連論文リスト
- Neural Conformal Control for Time Series Forecasting [54.96087475179419]
非定常環境における適応性を高める時系列のニューラルネットワーク共形予測手法を提案する。
提案手法は,ニューラルネットワークエンコーダを用いた補助的マルチビューデータを活用することにより,望ましい対象範囲を達成するために設計されたニューラルネットワークコントローラとして機能する。
予測間隔の整合性に優れたキャリブレーションを組み合わさった手法は, 適用範囲と確率的精度の大幅な向上を実証的に示す。
論文 参考訳(メタデータ) (2024-12-24T03:56:25Z) - SMORE: Similarity-based Hyperdimensional Domain Adaptation for
Multi-Sensor Time Series Classification [17.052624039805856]
マルチセンサ時系列分類のための新しい資源効率ドメイン適応(DA)アルゴリズムであるSMOREを提案する。
SMOREは、最先端(SOTA)のDNNベースのDAアルゴリズムよりも平均1.98%高い精度で18.81倍高速トレーニングと4.63倍高速推論を実現している。
論文 参考訳(メタデータ) (2024-02-20T18:48:49Z) - Transformer Multivariate Forecasting: Less is More? [42.558736426375056]
本稿では,実行効率を最適化しながら予測精度を高めるために冗長な情報を削減することに焦点を当てる。
このフレームワークは、5つの最先端(SOTA)モデルと4つの多様な実世界のデータセットによって評価される。
PCA+Crossformer(PCA+Crossformer)は平均平方誤差(MSE)を33.3%減らし、平均で49.2%減らす。
論文 参考訳(メタデータ) (2023-12-30T13:44:23Z) - Consensus-Adaptive RANSAC [104.87576373187426]
本稿では,パラメータ空間の探索を学習する新しいRANSACフレームワークを提案する。
注意機構は、ポイント・ツー・モデル残差のバッチで動作し、軽量のワンステップ・トランスフォーマーで見いだされたコンセンサスを考慮するために、ポイント・ツー・モデル推定状態を更新する。
論文 参考訳(メタデータ) (2023-07-26T08:25:46Z) - Weight Re-Mapping for Variational Quantum Algorithms [54.854986762287126]
変動量子回路(VQC)における重み付けの考え方を紹介する。
我々は,8つの分類データセットに対する影響を評価するために,7つの異なる重み再マッピング関数を用いる。
以上の結果から,重量再マッピングによりVQCの収束速度が向上することが示唆された。
論文 参考訳(メタデータ) (2023-06-09T09:42:21Z) - CARD: Channel Aligned Robust Blend Transformer for Time Series
Forecasting [50.23240107430597]
本稿では,CARD(Channel Aligned Robust Blend Transformer)という特殊なトランスを設計する。
まず、CARDはチャネルに沿ったアテンション構造を導入し、信号間の時間的相関をキャプチャする。
第二に、マルチスケール知識を効率的に活用するために、異なる解像度のトークンを生成するトークンブレンドモジュールを設計する。
第3に,潜在的な過度な問題を軽減するため,時系列予測のためのロバストな損失関数を導入する。
論文 参考訳(メタデータ) (2023-05-20T05:16:31Z) - Confidence-Nets: A Step Towards better Prediction Intervals for
regression Neural Networks on small datasets [0.0]
そこで本研究では,予測の不確かさを推定し,精度を向上し,予測変動の間隔を与えるアンサンブル手法を提案する。
提案手法は様々なデータセットで検証され,ニューラルネットワークモデルの性能が大幅に向上した。
論文 参考訳(メタデータ) (2022-10-31T06:38:40Z) - Transformers predicting the future. Applying attention in next-frame and
time series forecasting [0.0]
繰り返しニューラルネットワークは、最近まで、シーケンス内のタイムリーな依存関係をキャプチャする最良の方法の1つでした。
トランスフォーマーの導入により、RNNのない注意機構しか持たないアーキテクチャが、様々なシーケンス処理タスクの結果を改善することが証明された。
論文 参考訳(メタデータ) (2021-08-18T16:17:29Z) - Transformer Hawkes Process [79.16290557505211]
本稿では,長期的依存関係を捕捉する自己認識機構を利用したTransformer Hawkes Process (THP) モデルを提案する。
THPは、有意なマージンによる可能性と事象予測の精度の両方の観点から、既存のモデルより優れている。
本稿では、THPが関係情報を組み込む際に、複数の点過程を学習する際の予測性能の改善を実現する具体例を示す。
論文 参考訳(メタデータ) (2020-02-21T13:48:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。