R-Bench: Graduate-level Multi-disciplinary Benchmarks for LLM & MLLM Complex Reasoning Evaluation
- URL: http://arxiv.org/abs/2505.02018v1
- Date: Sun, 04 May 2025 07:48:36 GMT
- Title: R-Bench: Graduate-level Multi-disciplinary Benchmarks for LLM & MLLM Complex Reasoning Evaluation
- Authors: Meng-Hao Guo, Jiajun Xu, Yi Zhang, Jiaxi Song, Haoyang Peng, Yi-Xuan Deng, Xinzhi Dong, Kiyohiro Nakayama, Zhengyang Geng, Chen Wang, Bolin Ni, Guo-Wei Yang, Yongming Rao, Houwen Peng, Han Hu, Gordon Wetzstein, Shi-min Hu,
- Abstract summary: We introduce a graduate-level, multi-disciplinary, EnglishChinese benchmark, dubbed as Reasoning Bench (R-Bench)<n>RBench spans 1,094 questions across 108 subjects for language model evaluation and 665 questions across 83 subjects for multimodal model testing.<n>We evaluate widely used models, including OpenAI o1, GPT-4o, DeepSeek-R1, etc.
- Score: 75.33671166231096
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reasoning stands as a cornerstone of intelligence, enabling the synthesis of existing knowledge to solve complex problems. Despite remarkable progress, existing reasoning benchmarks often fail to rigorously evaluate the nuanced reasoning capabilities required for complex, real-world problemsolving, particularly in multi-disciplinary and multimodal contexts. In this paper, we introduce a graduate-level, multi-disciplinary, EnglishChinese benchmark, dubbed as Reasoning Bench (R-Bench), for assessing the reasoning capability of both language and multimodal models. RBench spans 1,094 questions across 108 subjects for language model evaluation and 665 questions across 83 subjects for multimodal model testing in both English and Chinese. These questions are meticulously curated to ensure rigorous difficulty calibration, subject balance, and crosslinguistic alignment, enabling the assessment to be an Olympiad-level multi-disciplinary benchmark. We evaluate widely used models, including OpenAI o1, GPT-4o, DeepSeek-R1, etc. Experimental results indicate that advanced models perform poorly on complex reasoning, especially multimodal reasoning. Even the top-performing model OpenAI o1 achieves only 53.2% accuracy on our multimodal evaluation. Data and code are made publicly available at here.
Related papers
- MMLU-Reason: Benchmarking Multi-Task Multi-modal Language Understanding and Reasoning [40.55833679660528]
We introduce the MMLU-Reason, a new benchmark designed to rigorously evaluate multi-modal reasoning with explicit thinking.<n>The MMLU-Reason comprises 1) a high-difficulty dataset of 1,083 questions spanning six diverse reasoning types with symbolic depth and multi-hop demands.<n>Overall, the MMLU-Reason offers a scalable foundation for evaluating, comparing, and improving the next generation of multi-modal reasoning systems.
arXiv Detail & Related papers (2025-05-22T09:41:55Z) - MDK12-Bench: A Multi-Discipline Benchmark for Evaluating Reasoning in Multimodal Large Language Models [50.43793764203352]
We introduce MDK12-Bench, a multi-disciplinary benchmark assessing the reasoning capabilities of MLLMs via real-world K-12 examinations.<n>Our benchmark comprises 140K reasoning instances across diverse difficulty levels from primary school to 12th grade.<n>It features 6,827 instance-level knowledge point annotations based on a well-organized knowledge structure, detailed answer explanations, difficulty labels and cross-year partitions.
arXiv Detail & Related papers (2025-04-08T08:06:53Z) - Challenging the Boundaries of Reasoning: An Olympiad-Level Math Benchmark for Large Language Models [86.45058529521258]
OlymMATH is a novel Olympiad-level mathematical benchmark designed to rigorously test the complex reasoning capabilities of LLMs.<n>OlymMATH features 200 meticulously curated problems, each manually verified and available in parallel English and Chinese versions.
arXiv Detail & Related papers (2025-03-27T11:20:17Z) - FoundaBench: Evaluating Chinese Fundamental Knowledge Capabilities of Large Language Models [64.11333762954283]
This paper introduces FoundaBench, a pioneering benchmark designed to rigorously evaluate the fundamental knowledge capabilities of Chinese LLMs.
We present an extensive evaluation of 12 state-of-the-art LLMs using FoundaBench, employing both traditional assessment methods and our CircularEval protocol to mitigate potential biases in model responses.
Our results highlight the superior performance of models pre-trained on Chinese corpora, and reveal a significant disparity between models' reasoning and memory recall capabilities.
arXiv Detail & Related papers (2024-04-29T01:49:07Z) - OlympiadBench: A Challenging Benchmark for Promoting AGI with Olympiad-Level Bilingual Multimodal Scientific Problems [62.06169250463104]
We present OlympiadBench, an Olympiad-level bilingual multimodal scientific benchmark, featuring 8,476 problems from Olympiad-level mathematics and physics competitions.
The best-performing model, GPT-4V, attains an average score of 17.97% on OlympiadBench, with a mere 10.74% in physics.
Our analysis orienting GPT-4V points out prevalent issues with hallucinations, knowledge omissions, and logical fallacies.
arXiv Detail & Related papers (2024-02-21T18:49:26Z) - SceMQA: A Scientific College Entrance Level Multimodal Question
Answering Benchmark [42.91902601376494]
The paper introduces SceMQA, a novel benchmark for scientific multimodal question answering at the college entrance level.
SceMQA focuses on core science subjects including Mathematics, Physics, Chemistry, and Biology.
It features a blend of multiple-choice and free-response formats, ensuring a comprehensive evaluation of AI models' abilities.
arXiv Detail & Related papers (2024-02-06T19:16:55Z) - MULTI: Multimodal Understanding Leaderboard with Text and Images [24.04211732343361]
We present MULTI, a Chinese multimodal dataset derived from authentic examination questions.<n> MULTI evaluates models using real-world examination standards, encompassing image-text comprehension, complex reasoning, and knowledge recall.<n>Our evaluation highlights substantial room for MLLM advancement, with Qwen2-VL-72B achieving a 76.9% accuracy on MULTI and 53.1% on MULTI-Elite leading 25 evaluated models.
arXiv Detail & Related papers (2024-02-05T16:41:02Z) - M3Exam: A Multilingual, Multimodal, Multilevel Benchmark for Examining
Large Language Models [76.88692952308084]
M3Exam is a benchmark for evaluating large language models (LLMs) in a multilingual, multimodal, and multilevel context.
M3Exam contains 12,317 questions in 9 diverse languages with three educational levels.
We assess the performance of top-performing LLMs on M3Exam and find that current models, including GPT-4, still struggle with multilingual text.
arXiv Detail & Related papers (2023-06-08T13:21:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.