LLM-OptiRA: LLM-Driven Optimization of Resource Allocation for Non-Convex Problems in Wireless Communications
- URL: http://arxiv.org/abs/2505.02091v1
- Date: Sun, 04 May 2025 12:53:04 GMT
- Title: LLM-OptiRA: LLM-Driven Optimization of Resource Allocation for Non-Convex Problems in Wireless Communications
- Authors: Xinyue Peng, Yanming Liu, Yihan Cang, Chaoqun Cao, Ming Chen,
- Abstract summary: We show how to solve non- resource allocation problems in wireless communication.<n>We also show how to ensure an error-correction rate of 80%.
- Score: 5.566493560848011
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Solving non-convex resource allocation problems poses significant challenges in wireless communication systems, often beyond the capability of traditional optimization techniques. To address this issue, we propose LLM-OptiRA, the first framework that leverages large language models (LLMs) to automatically detect and transform non-convex components into solvable forms, enabling fully automated resolution of non-convex resource allocation problems in wireless communication systems. LLM-OptiRA not only simplifies problem-solving by reducing reliance on expert knowledge, but also integrates error correction and feasibility validation mechanisms to ensure robustness. Experimental results show that LLM-OptiRA achieves an execution rate of 96% and a success rate of 80% on GPT-4, significantly outperforming baseline approaches in complex optimization tasks across diverse scenarios.
Related papers
- OptiHive: Ensemble Selection for LLM-Based Optimization via Statistical Modeling [3.8366697175402225]
We introduce OptiHive, a framework that produces high-quality solvers for optimization problems from natural-correction descriptions without iterative self-language.<n>OptiHive uses a single batched LLM query to generate diverse components (solvers, problem instances, and validation tests) and filters out erroneous components to ensure fully interpretable outputs.<n>On tasks ranging from traditional optimization problems to challenging variants of the Multi-Depot Vehicle Routing Problem, OptiHive significantly outperforms baselines.
arXiv Detail & Related papers (2025-08-04T15:11:51Z) - Heterogeneous Group-Based Reinforcement Learning for LLM-based Multi-Agent Systems [25.882461853973897]
We propose Multi-Agent Heterogeneous Group Policy Optimization (MHGPO), which guides policy updates by estimating relative reward advantages.<n>MHGPO eliminates the need for Critic networks, enhancing stability and reducing computational overhead.<n>We also introduce three group rollout sampling strategies that trade off between efficiency and effectiveness.
arXiv Detail & Related papers (2025-06-03T10:17:19Z) - Preference Optimization for Combinatorial Optimization Problems [54.87466279363487]
Reinforcement Learning (RL) has emerged as a powerful tool for neural optimization, enabling models learns that solve complex problems without requiring expert knowledge.<n>Despite significant progress, existing RL approaches face challenges such as diminishing reward signals and inefficient exploration in vast action spaces.<n>We propose Preference Optimization, a novel method that transforms quantitative reward signals into qualitative preference signals via statistical comparison modeling.
arXiv Detail & Related papers (2025-05-13T16:47:00Z) - Confident or Seek Stronger: Exploring Uncertainty-Based On-device LLM Routing From Benchmarking to Generalization [61.02719787737867]
Large language models (LLMs) are increasingly deployed and democratized on edge devices.<n>One promising solution is uncertainty-based SLM routing, offloading high-stakes queries to stronger LLMs when resulting in low-confidence responses on SLM.<n>We conduct a comprehensive investigation into benchmarking and generalization of uncertainty-driven routing strategies from SLMs to LLMs over 1500+ settings.
arXiv Detail & Related papers (2025-02-06T18:59:11Z) - Adaptive Resource Allocation Optimization Using Large Language Models in Dynamic Wireless Environments [25.866960634041092]
Current solutions rely on domain-specific architectures or techniques, and a general DL approach for constrained optimization remains undeveloped.<n>We propose a large language model for resource allocation (LLM-RAO) to address the complex resource allocation problem while adhering to constraints.<n>LLM-RAO achieves up to a 40% performance enhancement compared to conventional DL methods and up to an $80$% improvement over analytical approaches.
arXiv Detail & Related papers (2025-02-04T12:56:59Z) - Can Large Language Models Be Trusted as Evolutionary Optimizers for Network-Structured Combinatorial Problems? [8.082897040940447]
Large Language Models (LLMs) have shown strong capabilities in language understanding and reasoning across diverse domains.<n>In this work, we propose a systematic framework to evaluate the capability of LLMs to engage with problem structures.<n>We adopt the commonly used evolutionary (EVO) and propose a comprehensive evaluation framework that rigorously assesses the output fidelity of LLM-based operators.
arXiv Detail & Related papers (2025-01-25T05:19:19Z) - Optima: Optimizing Effectiveness and Efficiency for LLM-Based Multi-Agent System [75.25394449773052]
Large Language Model (LLM) based multi-agent systems (MAS) show remarkable potential in collaborative problem-solving.<n>Yet they still face critical challenges: low communication efficiency, poor scalability, and a lack of effective parameter-updating optimization methods.<n>We present Optima, a novel framework that addresses these issues by significantly enhancing both communication efficiency and task effectiveness.
arXiv Detail & Related papers (2024-10-10T17:00:06Z) - Control Large Language Models via Divide and Conquer [94.48784966256463]
This paper investigates controllable generation for large language models (LLMs) with prompt-based control, focusing on Lexically Constrained Generation (LCG)
We evaluate the performance of LLMs on satisfying lexical constraints with prompt-based control, as well as their efficacy in downstream applications.
arXiv Detail & Related papers (2024-10-06T21:20:06Z) - A Multi-Agent Approach to Fault Localization via Graph-Based Retrieval and Reflexion [8.22737389683156]
Traditional fault localization techniques require extensive training datasets and high computational resources.<n>Recent advances in Large Language Models (LLMs) offer new opportunities by enhancing code understanding and reasoning.<n>We propose LLM4FL, a multi-agent fault localization framework that utilizes three specialized LLM agents.<n> evaluated on the Defects4J benchmark, which includes 675 faults from 14 Java projects, LLM4FL achieves an 18.55% improvement in Top-1 accuracy over AutoFL and 4.82% over SoapFL.
arXiv Detail & Related papers (2024-09-20T16:47:34Z) - LLM-Empowered Resource Allocation in Wireless Communications Systems [12.653336728447654]
Large language models (LLMs) have the potential to realize artificial general intelligence (AGI)-enabled wireless networks.
We develop an LLM-based resource allocation scheme for wireless communication systems.
arXiv Detail & Related papers (2024-08-06T04:08:26Z) - Characterization of Large Language Model Development in the Datacenter [55.9909258342639]
Large Language Models (LLMs) have presented impressive performance across several transformative tasks.
However, it is non-trivial to efficiently utilize large-scale cluster resources to develop LLMs.
We present an in-depth characterization study of a six-month LLM development workload trace collected from our GPU datacenter Acme.
arXiv Detail & Related papers (2024-03-12T13:31:14Z) - SparseLLM: Towards Global Pruning for Pre-trained Language Models [12.057369029549534]
We propose SparseLLM, a novel framework that redefines the global pruning process into manageable, coordinated subproblems.
SparseLLM's approach conceptualizes LLMs as a chain of modular functions and leverages auxiliary variables for problem decomposition.
It demonstrates significant performance improvements, particularly in high-sparsity regimes.
arXiv Detail & Related papers (2024-02-28T00:09:07Z) - Optimization-driven Machine Learning for Intelligent Reflecting Surfaces
Assisted Wireless Networks [82.33619654835348]
Intelligent surface (IRS) has been employed to reshape the wireless channels by controlling individual scattering elements' phase shifts.
Due to the large size of scattering elements, the passive beamforming is typically challenged by the high computational complexity.
In this article, we focus on machine learning (ML) approaches for performance in IRS-assisted wireless networks.
arXiv Detail & Related papers (2020-08-29T08:39:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.