Deep Representation Learning for Electronic Design Automation
- URL: http://arxiv.org/abs/2505.02105v1
- Date: Sun, 04 May 2025 13:18:58 GMT
- Title: Deep Representation Learning for Electronic Design Automation
- Authors: Pratik Shrestha, Saran Phatharodom, Alec Aversa, David Blankenship, Zhengfeng Wu, Ioannis Savidis,
- Abstract summary: Representation learning has become an effective technique utilized by electronic design automation (EDA) algorithms.<n>This paper examines the application of representation learning in EDA, covering foundational concepts and analyzing prior work and case studies.<n>Key techniques, including image-based methods, graph-based approaches, and hybrid multimodal solutions, are presented to illustrate the improvements provided in routing, timing, and parasitic prediction.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Representation learning has become an effective technique utilized by electronic design automation (EDA) algorithms, which leverage the natural representation of workflow elements as images, grids, and graphs. By addressing challenges related to the increasing complexity of circuits and stringent power, performance, and area (PPA) requirements, representation learning facilitates the automatic extraction of meaningful features from complex data formats, including images, grids, and graphs. This paper examines the application of representation learning in EDA, covering foundational concepts and analyzing prior work and case studies on tasks that include timing prediction, routability analysis, and automated placement. Key techniques, including image-based methods, graph-based approaches, and hybrid multimodal solutions, are presented to illustrate the improvements provided in routing, timing, and parasitic prediction. The provided advancements demonstrate the potential of representation learning to enhance efficiency, accuracy, and scalability in current integrated circuit design flows.
Related papers
- IN45023 Neural Network Design Patterns in Computer Vision Seminar Report, Summer 2025 [0.0]
This report analyzes the evolution of key design patterns in computer vision by examining six influential papers.<n>We review ResNet, which introduced residual connections to overcome the vanishing gradient problem.<n>We examine the Vision Transformer (ViT), which established a new paradigm by applying the Transformer ar- chitecture to sequences of image patches.
arXiv Detail & Related papers (2025-07-31T09:08:11Z) - Feature-based Graph Attention Networks Improve Online Continual Learning [19.557518080476566]
We present a novel online continual learning framework based on Graph Attention Networks (GATs)<n>GATs effectively capture contextual relationships and dynamically update the task-specific representation via learned attention weights.<n>In addition, we propose the rehearsal memory duplication technique that improves the representation of the previous tasks while maintaining the memory budget.
arXiv Detail & Related papers (2025-02-13T10:18:44Z) - Learning Task Representations from In-Context Learning [73.72066284711462]
Large language models (LLMs) have demonstrated remarkable proficiency in in-context learning.<n>We introduce an automated formulation for encoding task information in ICL prompts as a function of attention heads.<n>We show that our method's effectiveness stems from aligning the distribution of the last hidden state with that of an optimally performing in-context-learned model.
arXiv Detail & Related papers (2025-02-08T00:16:44Z) - Customized Information and Domain-centric Knowledge Graph Construction with Large Language Models [0.0]
We propose a novel approach based on knowledge graphs to provide timely access to structured information.
Our framework encompasses a text mining process, which includes information retrieval, keyphrase extraction, semantic network creation, and topic map visualization.
We apply our methodology to the domain of automotive electrical systems to demonstrate the approach, which is scalable.
arXiv Detail & Related papers (2024-09-30T07:08:28Z) - Data Analysis in the Era of Generative AI [56.44807642944589]
This paper explores the potential of AI-powered tools to reshape data analysis, focusing on design considerations and challenges.
We explore how the emergence of large language and multimodal models offers new opportunities to enhance various stages of data analysis workflow.
We then examine human-centered design principles that facilitate intuitive interactions, build user trust, and streamline the AI-assisted analysis workflow across multiple apps.
arXiv Detail & Related papers (2024-09-27T06:31:03Z) - Advances in Diffusion Models for Image Data Augmentation: A Review of Methods, Models, Evaluation Metrics and Future Research Directions [6.2719115566879236]
Diffusion Models (DMs) have emerged as a powerful tool for image data augmentation.<n>DMs generate realistic and diverse images by learning the underlying data distribution.<n>Current challenges and future research directions in the field are discussed.
arXiv Detail & Related papers (2024-07-04T18:06:48Z) - Can Graph Learning Improve Planning in LLM-based Agents? [61.47027387839096]
Task planning in language agents is emerging as an important research topic alongside the development of large language models (LLMs)
In this paper, we explore graph learning-based methods for task planning, a direction that is to the prevalent focus on prompt design.
Our interest in graph learning stems from a theoretical discovery: the biases of attention and auto-regressive loss impede LLMs' ability to effectively navigate decision-making on graphs.
arXiv Detail & Related papers (2024-05-29T14:26:24Z) - From Pixels to Insights: A Survey on Automatic Chart Understanding in the Era of Large Foundation Models [98.41645229835493]
Data visualization in the form of charts plays a pivotal role in data analysis, offering critical insights and aiding in informed decision-making.<n>Large foundation models, such as large language models, have revolutionized various natural language processing tasks.<n>This survey paper serves as a comprehensive resource for researchers and practitioners in the fields of natural language processing, computer vision, and data analysis.
arXiv Detail & Related papers (2024-03-18T17:57:09Z) - Graph Learning under Distribution Shifts: A Comprehensive Survey on
Domain Adaptation, Out-of-distribution, and Continual Learning [53.81365215811222]
We provide a review and summary of the latest approaches, strategies, and insights that address distribution shifts within the context of graph learning.
We categorize existing graph learning methods into several essential scenarios, including graph domain adaptation learning, graph out-of-distribution learning, and graph continual learning.
We discuss the potential applications and future directions for graph learning under distribution shifts with a systematic analysis of the current state in this field.
arXiv Detail & Related papers (2024-02-26T07:52:40Z) - A Comprehensive End-to-End Computer Vision Framework for Restoration and
Recognition of Low-Quality Engineering Drawings [19.375278164300987]
This paper focuses on restoring and recognizing low-quality engineering drawings.
An end-to-end framework is proposed to improve the quality of the drawings and identify the graphical symbols on them.
Experiments on real-world electrical diagrams show that the proposed framework achieves an accuracy of 98.98% and a recall of 99.33%.
arXiv Detail & Related papers (2023-12-21T07:22:25Z) - Computation-efficient Deep Learning for Computer Vision: A Survey [121.84121397440337]
Deep learning models have reached or even exceeded human-level performance in a range of visual perception tasks.
Deep learning models usually demand significant computational resources, leading to impractical power consumption, latency, or carbon emissions in real-world scenarios.
New research focus is computationally efficient deep learning, which strives to achieve satisfactory performance while minimizing the computational cost during inference.
arXiv Detail & Related papers (2023-08-27T03:55:28Z) - Graph signal processing for machine learning: A review and new
perspectives [57.285378618394624]
We review a few important contributions made by GSP concepts and tools, such as graph filters and transforms, to the development of novel machine learning algorithms.
We discuss exploiting data structure and relational priors, improving data and computational efficiency, and enhancing model interpretability.
We provide new perspectives on future development of GSP techniques that may serve as a bridge between applied mathematics and signal processing on one side, and machine learning and network science on the other.
arXiv Detail & Related papers (2020-07-31T13:21:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.