Online Functional Principal Component Analysis on a Multidimensional Domain
- URL: http://arxiv.org/abs/2505.02131v1
- Date: Sun, 04 May 2025 14:41:02 GMT
- Title: Online Functional Principal Component Analysis on a Multidimensional Domain
- Authors: Muye Nanshan, Nan Zhang, Jiguo Cao,
- Abstract summary: Multidimensional functional data streams arise in diverse scientific fields, yet their analysis poses significant challenges.<n>We propose a novel online framework for functional principal component analysis that enables efficient and modeling of such data.
- Score: 1.4431321927048788
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multidimensional functional data streams arise in diverse scientific fields, yet their analysis poses significant challenges. We propose a novel online framework for functional principal component analysis that enables efficient and scalable modeling of such data. Our method represents functional principal components using tensor product splines, enforcing smoothness and orthonormality through a penalized framework on a Stiefel manifold. An efficient Riemannian stochastic gradient descent algorithm is developed, with extensions inspired by adaptive moment estimation and averaging techniques to accelerate convergence. Additionally, a dynamic tuning strategy for smoothing parameter selection is developed based on a rolling averaged block validation score that adapts to the streaming nature of the data. Extensive simulations and real-world applications demonstrate the flexibility and effectiveness of this framework for analyzing multidimensional functional data.
Related papers
- Generalized Tensor-based Parameter-Efficient Fine-Tuning via Lie Group Transformations [50.010924231754856]
Adapting pre-trained foundation models for diverse downstream tasks is a core practice in artificial intelligence.<n>To overcome this, parameter-efficient fine-tuning (PEFT) methods like LoRA have emerged and are becoming a growing research focus.<n>We propose a generalization that extends matrix-based PEFT methods to higher-dimensional parameter spaces without compromising their structural properties.
arXiv Detail & Related papers (2025-04-01T14:36:45Z) - FuncGenFoil: Airfoil Generation and Editing Model in Function Space [63.274584650021744]
We introduce FuncGenFoil, a novel function-space generative model that directly reconstructs airfoil geometries as function curves.<n> Empirical evaluations demonstrate that FuncGenFoil improves upon state-of-the-art methods in airfoil generation.
arXiv Detail & Related papers (2025-02-15T07:56:58Z) - Learnable Infinite Taylor Gaussian for Dynamic View Rendering [55.382017409903305]
This paper introduces a novel approach based on a learnable Taylor Formula to model the temporal evolution of Gaussians.<n>The proposed method achieves state-of-the-art performance in this domain.
arXiv Detail & Related papers (2024-12-05T16:03:37Z) - Learning dynamical systems from data: Gradient-based dictionary optimization [0.8643517734716606]
We present a novel gradient descent-based optimization framework for learning suitable basis functions from data.<n>We show how it can be used in combination with EDMD, SINDy, and PDE-FIND.
arXiv Detail & Related papers (2024-11-07T15:15:27Z) - LOCAL: Learning with Orientation Matrix to Infer Causal Structure from Time Series Data [51.47827479376251]
LOCAL is a highly efficient, easy-to-implement, and constraint-free method for recovering dynamic causal structures.<n>Asymptotic Causal Learning Mask (ACML) and Dynamic Graph Learning (DGPL)<n>Experiments on synthetic and real-world datasets demonstrate that LOCAL significantly outperforms existing methods.
arXiv Detail & Related papers (2024-10-25T10:48:41Z) - A Functional Extension of Semi-Structured Networks [2.482050942288848]
Semi-structured networks (SSNs) merge structures familiar from additive models with deep neural networks.
Inspired by large-scale datasets, this paper explores extending SSNs to functional data.
We propose a functional SSN method that retains the advantageous properties of classical functional regression approaches while also improving scalability.
arXiv Detail & Related papers (2024-10-07T18:50:18Z) - Ensemble Kalman Filtering Meets Gaussian Process SSM for Non-Mean-Field and Online Inference [47.460898983429374]
We introduce an ensemble Kalman filter (EnKF) into the non-mean-field (NMF) variational inference framework to approximate the posterior distribution of the latent states.
This novel marriage between EnKF and GPSSM not only eliminates the need for extensive parameterization in learning variational distributions, but also enables an interpretable, closed-form approximation of the evidence lower bound (ELBO)
We demonstrate that the resulting EnKF-aided online algorithm embodies a principled objective function by ensuring data-fitting accuracy while incorporating model regularizations to mitigate overfitting.
arXiv Detail & Related papers (2023-12-10T15:22:30Z) - FAStEN: An Efficient Adaptive Method for Feature Selection and Estimation in High-Dimensional Functional Regressions [7.674715791336311]
We propose a new, flexible and ultra-efficient approach to perform feature selection in a sparse function-on-function regression problem.
We show how to extend it to the scalar-on-function framework.
We present an application to brain fMRI data from the AOMIC PIOP1 study.
arXiv Detail & Related papers (2023-03-26T19:41:17Z) - Auxiliary Functions as Koopman Observables: Data-Driven Analysis of
Dynamical Systems via Polynomial Optimization [0.0]
We present a flexible data-driven method for system analysis that does not require explicit model discovery.
The method is rooted in well-established techniques for approxing the Koopman operator from data and is implemented as a semidefinite program that can be solved numerically.
arXiv Detail & Related papers (2023-03-02T18:44:18Z) - Offline Reinforcement Learning with Differentiable Function
Approximation is Provably Efficient [65.08966446962845]
offline reinforcement learning, which aims at optimizing decision-making strategies with historical data, has been extensively applied in real-life applications.
We take a step by considering offline reinforcement learning with differentiable function class approximation (DFA)
Most importantly, we show offline differentiable function approximation is provably efficient by analyzing the pessimistic fitted Q-learning algorithm.
arXiv Detail & Related papers (2022-10-03T07:59:42Z) - Efficient Multidimensional Functional Data Analysis Using Marginal
Product Basis Systems [2.4554686192257424]
We propose a framework for learning continuous representations from a sample of multidimensional functional data.
We show that the resulting estimation problem can be solved efficiently by the tensor decomposition.
We conclude with a real data application in neuroimaging.
arXiv Detail & Related papers (2021-07-30T16:02:15Z) - Dynamic Federated Learning [57.14673504239551]
Federated learning has emerged as an umbrella term for centralized coordination strategies in multi-agent environments.
We consider a federated learning model where at every iteration, a random subset of available agents perform local updates based on their data.
Under a non-stationary random walk model on the true minimizer for the aggregate optimization problem, we establish that the performance of the architecture is determined by three factors, namely, the data variability at each agent, the model variability across all agents, and a tracking term that is inversely proportional to the learning rate of the algorithm.
arXiv Detail & Related papers (2020-02-20T15:00:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.