Spotting the Unexpected (STU): A 3D LiDAR Dataset for Anomaly Segmentation in Autonomous Driving
- URL: http://arxiv.org/abs/2505.02148v1
- Date: Sun, 04 May 2025 15:15:35 GMT
- Title: Spotting the Unexpected (STU): A 3D LiDAR Dataset for Anomaly Segmentation in Autonomous Driving
- Authors: Alexey Nekrasov, Malcolm Burdorf, Stewart Worrall, Bastian Leibe, Julie Stephany Berrio Perez,
- Abstract summary: This paper presents a novel dataset for anomaly segmentation in driving scenarios.<n>It is the first publicly available dataset focused on road anomaly segmentation with dense 3D semantic labeling.<n>Our dataset and evaluation code will be openly available, facilitating the testing and performance comparison of different approaches.
- Score: 14.403130104985557
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: To operate safely, autonomous vehicles (AVs) need to detect and handle unexpected objects or anomalies on the road. While significant research exists for anomaly detection and segmentation in 2D, research progress in 3D is underexplored. Existing datasets lack high-quality multimodal data that are typically found in AVs. This paper presents a novel dataset for anomaly segmentation in driving scenarios. To the best of our knowledge, it is the first publicly available dataset focused on road anomaly segmentation with dense 3D semantic labeling, incorporating both LiDAR and camera data, as well as sequential information to enable anomaly detection across various ranges. This capability is critical for the safe navigation of autonomous vehicles. We adapted and evaluated several baseline models for 3D segmentation, highlighting the challenges of 3D anomaly detection in driving environments. Our dataset and evaluation code will be openly available, facilitating the testing and performance comparison of different approaches.
Related papers
- Stereo-based 3D Anomaly Object Detection for Autonomous Driving: A New Dataset and Baseline [10.933880236559604]
3D detection technology is widely used in the field of autonomous driving.<n>For rare anomaly categories that appear on the road, 3D detection models often misdetect or fail to detect anomalies.<n>This paper proposes a Stereo-based 3D Anomaly object Detection (S3AD) algorithm.
arXiv Detail & Related papers (2025-07-12T09:10:29Z) - Towards Zero-shot 3D Anomaly Localization [58.62650061201283]
3DzAL is a novel patch-level contrastive learning framework for 3D anomaly detection and localization.<n>We show that 3DzAL outperforms the state-of-the-art anomaly detection and localization performance.
arXiv Detail & Related papers (2024-12-05T16:25:27Z) - HeightFormer: A Semantic Alignment Monocular 3D Object Detection Method from Roadside Perspective [11.841338298700421]
We propose a novel 3D object detection framework integrating Spatial Former and Voxel Pooling Former to enhance 2D-to-3D projection based on height estimation.
Experiments were conducted using the Rope3D and DAIR-V2X-I dataset, and the results demonstrated the outperformance of the proposed algorithm in the detection of both vehicles and cyclists.
arXiv Detail & Related papers (2024-10-10T09:37:33Z) - SeSame: Simple, Easy 3D Object Detection with Point-Wise Semantics [0.7373617024876725]
In autonomous driving, 3D object detection provides more precise information for downstream tasks, including path planning and motion estimation.
We propose SeSame: a method aimed at enhancing semantic information in existing LiDAR-only based 3D object detection.
Experiments demonstrate the effectiveness of our method with performance improvements on the KITTI object detection benchmark.
arXiv Detail & Related papers (2024-03-11T08:17:56Z) - Self-supervised Feature Adaptation for 3D Industrial Anomaly Detection [59.41026558455904]
We focus on multi-modal anomaly detection. Specifically, we investigate early multi-modal approaches that attempted to utilize models pre-trained on large-scale visual datasets.
We propose a Local-to-global Self-supervised Feature Adaptation (LSFA) method to finetune the adaptors and learn task-oriented representation toward anomaly detection.
arXiv Detail & Related papers (2024-01-06T07:30:41Z) - Generalized Few-Shot 3D Object Detection of LiDAR Point Cloud for
Autonomous Driving [91.39625612027386]
We propose a novel task, called generalized few-shot 3D object detection, where we have a large amount of training data for common (base) objects, but only a few data for rare (novel) classes.
Specifically, we analyze in-depth differences between images and point clouds, and then present a practical principle for the few-shot setting in the 3D LiDAR dataset.
To solve this task, we propose an incremental fine-tuning method to extend existing 3D detection models to recognize both common and rare objects.
arXiv Detail & Related papers (2023-02-08T07:11:36Z) - LiDAR-CS Dataset: LiDAR Point Cloud Dataset with Cross-Sensors for 3D
Object Detection [36.77084564823707]
deep learning methods heavily rely on annotated data and often face domain generalization issues.
LiDAR-CS dataset is the first dataset that addresses the sensor-related gaps in the domain of 3D object detection in real traffic.
arXiv Detail & Related papers (2023-01-29T19:10:35Z) - One Million Scenes for Autonomous Driving: ONCE Dataset [91.94189514073354]
We introduce the ONCE dataset for 3D object detection in the autonomous driving scenario.
The data is selected from 144 driving hours, which is 20x longer than the largest 3D autonomous driving dataset available.
We reproduce and evaluate a variety of self-supervised and semi-supervised methods on the ONCE dataset.
arXiv Detail & Related papers (2021-06-21T12:28:08Z) - FGR: Frustum-Aware Geometric Reasoning for Weakly Supervised 3D Vehicle
Detection [81.79171905308827]
We propose frustum-aware geometric reasoning (FGR) to detect vehicles in point clouds without any 3D annotations.
Our method consists of two stages: coarse 3D segmentation and 3D bounding box estimation.
It is able to accurately detect objects in 3D space with only 2D bounding boxes and sparse point clouds.
arXiv Detail & Related papers (2021-05-17T07:29:55Z) - Exploiting Playbacks in Unsupervised Domain Adaptation for 3D Object
Detection [55.12894776039135]
State-of-the-art 3D object detectors, based on deep learning, have shown promising accuracy but are prone to over-fit to domain idiosyncrasies.
We propose a novel learning approach that drastically reduces this gap by fine-tuning the detector on pseudo-labels in the target domain.
We show, on five autonomous driving datasets, that fine-tuning the detector on these pseudo-labels substantially reduces the domain gap to new driving environments.
arXiv Detail & Related papers (2021-03-26T01:18:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.