論文の概要: Identifying Legal Holdings with LLMs: A Systematic Study of Performance, Scale, and Memorization
- arxiv url: http://arxiv.org/abs/2505.02172v2
- Date: Thu, 22 May 2025 13:14:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-23 17:12:47.773909
- Title: Identifying Legal Holdings with LLMs: A Systematic Study of Performance, Scale, and Memorization
- Title(参考訳): LLMによる法定ホールディングスの同定:性能・規模・記憶の体系的研究
- Authors: Chuck Arvin,
- Abstract要約: ケースホールディングスを特定するための法的なベンチマークデータセットであるCaseHOLDにおいて,現代の大規模言語モデル(LLM)の性能を評価するための一連の実験を行った。
実験では, このタスクの性能はモデルサイズで向上し, マクロF1スコアは0.744点, 0.720点となった。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As large language models (LLMs) continue to advance in capabilities, it is essential to assess how they perform on established benchmarks. In this study, we present a suite of experiments to assess the performance of modern LLMs (ranging from 3B to 90B+ parameters) on CaseHOLD, a legal benchmark dataset for identifying case holdings. Our experiments demonstrate ``scaling effects'' - performance on this task improves with model size, with more capable models like GPT4o and AmazonNovaPro achieving macro F1 scores of 0.744 and 0.720 respectively. These scores are competitive with the best published results on this dataset, and do not require any technically sophisticated model training, fine-tuning or few-shot prompting. To ensure that these strong results are not due to memorization of judicial opinions contained in the training data, we develop and utilize a novel citation anonymization test that preserves semantic meaning while ensuring case names and citations are fictitious. Models maintain strong performance under these conditions (macro F1 of 0.728), suggesting the performance is not due to rote memorization. These findings demonstrate both the promise and current limitations of LLMs for legal tasks with important implications for the development and measurement of automated legal analytics and legal benchmarks.
- Abstract(参考訳): 大規模言語モデル(LLM)の能力向上が進むにつれ、確立したベンチマークでどのように機能するかを評価することが不可欠である。
本研究では,ケースホールドを識別するための法的なベンチマークデータセットであるCaseHOLDにおいて,現代のLCM(3Bから90B以上のパラメータ)の性能を評価するための一連の実験を行った。
GPT4oやAmazonNovaProといったより有能なモデルでそれぞれ0.744と0.720のマクロF1スコアを達成しています。
これらのスコアは、このデータセットで発表された最高の結果と競合し、技術的に洗練されたモデルトレーニング、微調整、数発のプロンプトを必要としない。
これらの強い結果がトレーニングデータに含まれる司法意見の記憶によるものではないことを保証するため、事例名や引用が本物であることを保証しながら意味的な意味を保った新しい引用匿名化テストを開発し、活用する。
これらの条件下でのモデルの性能は高い(マクロF1は0.728)。
これらの結果は,LLMの法的なタスクに対する将来性と現在の限界の両方を示し,自動化された法的な分析と法的なベンチマークの開発と測定に重要な意味を持っている。
関連論文リスト
- Revisiting LLM Evaluation through Mechanism Interpretability: a New Metric and Model Utility Law [99.56567010306807]
大規模言語モデル(LLM)は、学術、産業、そして日々のアプリケーションに欠かせないものになっている。
本稿では,従来の性能指標を補完する機構解釈可能性技術を導入し,モデル利用指標(MUI)を提案する。
論文 参考訳(メタデータ) (2025-04-10T04:09:47Z) - Training an LLM-as-a-Judge Model: Pipeline, Insights, and Practical Lessons [9.954960702259918]
本稿では,文脈認識評価を行うLLM(en:en:en:en:en:en:en:en:LLMs)ジャッジであるThemisを紹介する。
Themisの開発パイプラインの概要を概観し、シナリオに依存した評価プロンプトを強調します。
メタ評価のための人間ラベル付きベンチマークを2つ導入し、テミスが人間の嗜好を経済的に高度に調整できることを実証した。
論文 参考訳(メタデータ) (2025-02-05T08:35:55Z) - The Vulnerability of Language Model Benchmarks: Do They Accurately Reflect True LLM Performance? [1.3810901729134184]
大きな言語モデル(LLM)は、真の言語理解と適応性を示すのに失敗しながら、標準化されたテストで優れている。
NLP評価フレームワークの系統的解析により,評価スペクトルにまたがる広範囲にわたる脆弱性が明らかになった。
我々は、操作に抵抗し、データの汚染を最小限に抑え、ドメイン固有のタスクを評価する新しい評価方法の土台を築いた。
論文 参考訳(メタデータ) (2024-12-02T20:49:21Z) - Uncertainty Aware Learning for Language Model Alignment [97.36361196793929]
異なるタスクシナリオのモデルアライメントを改善するために,不確実性認識学習(UAL)を提案する。
トレーニングのラベルの平滑化値を個々のサンプルの不確実性に応じて適応的に設定する。
広く使われているベンチマーク実験では、我々のUALは標準教師あり微調整よりも著しく優れています。
論文 参考訳(メタデータ) (2024-06-07T11:37:45Z) - GRATH: Gradual Self-Truthifying for Large Language Models [63.502835648056305]
GRATH(Gradual Self-Truthifying)は,大規模言語モデル(LLM)の真偽性を高めるためのポストプロセッシング手法である。
GRATHは、反復的に真理データを洗練し、モデルを更新する。
GRATHはTruthfulQAの最先端性能を達成し、MC1の精度は54.71%、MC2の精度は69.10%であり、70B-LLMよりも高い。
論文 参考訳(メタデータ) (2024-01-22T19:00:08Z) - Don't Make Your LLM an Evaluation Benchmark Cheater [142.24553056600627]
大規模言語モデル(LLM)は人工知能のフロンティアを大幅に進歩させ、モデルキャパシティを著しく向上させた。
モデル性能を評価するために, LLMの能力レベルを測定するための評価ベンチマークを構築するのが典型的な方法である。
評価ベンチマークを用いて不適切なリスクと影響について検討し,評価結果を誤って解釈する。
論文 参考訳(メタデータ) (2023-11-03T14:59:54Z) - Modeling Legal Reasoning: LM Annotation at the Edge of Human Agreement [3.537369004801589]
我々は法学哲学に基づく法学推論の分類について研究する。
我々は、ドメインの専門家チームによって注釈付けされた、アメリカ合衆国最高裁判所の歴史的意見の新しいデータセットを使用します。
生成モデルは、人間のアノテーションに提示される命令と同等の命令が与えられた場合、性能が良くないことがわかった。
論文 参考訳(メタデータ) (2023-10-27T19:27:59Z) - LLMs as Factual Reasoners: Insights from Existing Benchmarks and Beyond [135.8013388183257]
そこで我々は,SummEditsと呼ばれる10ドメインのベンチマークで不整合検出ベンチマークを作成し,実装する新しいプロトコルを提案する。
ほとんどのLLMはSummEditsで苦労しており、パフォーマンスはランダムに近い。
最も優れたモデルであるGPT-4は、推定された人間のパフォーマンスよりも8%低い。
論文 参考訳(メタデータ) (2023-05-23T21:50:06Z) - Evaluating the Performance of Large Language Models on GAOKAO Benchmark [53.663757126289795]
本稿では,中国のガオカオ検定の質問をサンプルとして用いた直感的なベンチマークであるガオカオベンチについて紹介する。
人間の評価により, GPT-4, ChatGPT, ERNIE-Botを含むLLMの変換総得点を得た。
また、LLMを用いて主観的質問を格付けし、モデルスコアが人間のスコアと適度な一貫性を達成することを確認する。
論文 参考訳(メタデータ) (2023-05-21T14:39:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。