Parameter-Efficient Transformer Embeddings
- URL: http://arxiv.org/abs/2505.02266v1
- Date: Sun, 04 May 2025 21:47:18 GMT
- Title: Parameter-Efficient Transformer Embeddings
- Authors: Henry Ndubuaku, Mouad Talhi,
- Abstract summary: We propose an alternative approach in which token embedding vectors are first generated deterministically, directly from the token IDs.<n>We train standard transformers and our architecture on natural language inference tasks.<n>Our results demonstrate that the proposed method competitive performance using significantly fewer parameters, trains faster, and operates effectively without the need for dropout.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Embedding layers in transformer-based NLP models typically account for the largest share of model parameters, scaling with vocabulary size but not yielding performance gains proportional to scale. We propose an alternative approach in which token embedding vectors are first generated deterministically, directly from the token IDs using a Fourier expansion of their normalized values, followed by a lightweight multilayer perceptron (MLP) that captures higher-order interactions. We train standard transformers and our architecture on natural language inference tasks (SNLI and MNLI), and evaluate zero-shot performance on sentence textual similarity (STS-B). Our results demonstrate that the proposed method achieves competitive performance using significantly fewer parameters, trains faster, and operates effectively without the need for dropout. This proof-of-concept study highlights the potential for scalable, memory-efficient language models and motivates further large-scale experimentation based on our findings.
Related papers
- Scalable Language Models with Posterior Inference of Latent Thought Vectors [52.63299874322121]
Latent-Thought Language Models (LTMs) incorporate explicit latent thought vectors that follow an explicit prior model in latent space.<n>LTMs possess additional scaling dimensions beyond traditional LLMs, yielding a structured design space.<n>LTMs significantly outperform conventional autoregressive models and discrete diffusion models in validation perplexity and zero-shot language modeling.
arXiv Detail & Related papers (2025-02-03T17:50:34Z) - Investigating Low-Rank Training in Transformer Language Models: Efficiency and Scaling Analysis [16.253898272659242]
This study focuses on Transformer-based LLMs, specifically applying low-rank parametrization to feedforward networks (FFNs)
Experiments on the large RefinedWeb dataset show that low-rank parametrization is both efficient (e.g., 2.6$times$ FFN speed-up with 32% parameters) and effective during training.
Motivated by this finding, we develop the wide and structured networks surpassing the current medium-sized and large-sized Transformer in perplexity and throughput performance.
arXiv Detail & Related papers (2024-07-13T10:08:55Z) - Learning on Transformers is Provable Low-Rank and Sparse: A One-layer Analysis [63.66763657191476]
We show that efficient numerical training and inference algorithms as low-rank computation have impressive performance for learning Transformer-based adaption.
We analyze how magnitude-based models affect generalization while improving adaption.
We conclude that proper magnitude-based has a slight on the testing performance.
arXiv Detail & Related papers (2024-06-24T23:00:58Z) - Generative Parameter-Efficient Fine-Tuning [8.481707805559589]
GIFT learns to generate the fine-tuned weights for a layer directly from its pretrained weights.
We show this formulation bridges parameter-efficient fine-tuning and representation fine-tuning.
arXiv Detail & Related papers (2023-12-01T16:33:57Z) - Approximated Prompt Tuning for Vision-Language Pre-trained Models [54.326232586461614]
In vision-language pre-trained models, prompt tuning often requires a large number of learnable tokens to bridge the gap between the pre-training and downstream tasks.
We propose a novel Approximated Prompt Tuning (APT) approach towards efficient VL transfer learning.
arXiv Detail & Related papers (2023-06-27T05:43:47Z) - When to Use Efficient Self Attention? Profiling Text, Speech and Image
Transformer Variants [39.00433193973159]
We present the first unified study of the efficiency of self-attention-based Transformer variants spanning text, speech and vision.
We identify input length thresholds (tipping points) at which efficient Transformer variants become more efficient than vanilla models.
To conduct this analysis for speech, we introduce L-HuBERT, a novel local-attention variant of a self-supervised speech model.
arXiv Detail & Related papers (2023-06-14T17:59:02Z) - Towards A Unified View of Sparse Feed-Forward Network in Pretraining
Large Language Model [58.9100867327305]
Large and sparse feed-forward layers (S-FFN) have proven effective in scaling up Transformers model size for textitpretraining large language models.
We analyzed two major design choices of S-FFN: the memory block (a.k.a. expert) size and the memory block selection method.
We found a simpler selection method -- textbftextttAvg-K that selects blocks through their mean aggregated hidden states, achieving lower perplexity in language model pretraining.
arXiv Detail & Related papers (2023-05-23T12:28:37Z) - MoEfication: Conditional Computation of Transformer Models for Efficient
Inference [66.56994436947441]
Transformer-based pre-trained language models can achieve superior performance on most NLP tasks due to large parameter capacity, but also lead to huge computation cost.
We explore to accelerate large-model inference by conditional computation based on the sparse activation phenomenon.
We propose to transform a large model into its mixture-of-experts (MoE) version with equal model size, namely MoEfication.
arXiv Detail & Related papers (2021-10-05T02:14:38Z) - Transformer-F: A Transformer network with effective methods for learning
universal sentence representation [8.225067988604351]
The Transformer model is widely used in natural language processing for sentence representation.
In this paper, two approaches are introduced to improve the performance of Transformers.
arXiv Detail & Related papers (2021-07-02T03:20:11Z) - Bayesian Transformer Language Models for Speech Recognition [59.235405107295655]
State-of-the-art neural language models (LMs) represented by Transformers are highly complex.
This paper proposes a full Bayesian learning framework for Transformer LM estimation.
arXiv Detail & Related papers (2021-02-09T10:55:27Z) - Rethinking embedding coupling in pre-trained language models [46.11201932668366]
We re-evaluate the standard practice of sharing weights between input and output embeddings in pre-trained language models.
We show that decoupled embeddings provide increased modeling flexibility, allowing us to significantly improve the efficiency of parameter allocation.
We are able to train models that achieve strong performance on the XTREME benchmark without increasing the number of parameters at the fine-tuning stage.
arXiv Detail & Related papers (2020-10-24T07:43:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.