Real-time Spatial Retrieval Augmented Generation for Urban Environments
- URL: http://arxiv.org/abs/2505.02271v1
- Date: Sun, 04 May 2025 21:57:58 GMT
- Title: Real-time Spatial Retrieval Augmented Generation for Urban Environments
- Authors: David Nazareno Campo, Javier Conde, Álvaro Alonso, Gabriel Huecas, Joaquín Salvachúa, Pedro Reviriego,
- Abstract summary: This work proposes a real-time spatial RAG architecture that defines the necessary components for the effective integration of generative AI into cities.<n>The proposed architecture is implemented using FIWARE, an ecosystem of software components to develop smart city solutions and digital twins.
- Score: 2.8367942280334493
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The proliferation of Generative Artificial Ingelligence (AI), especially Large Language Models, presents transformative opportunities for urban applications through Urban Foundation Models. However, base models face limitations, as they only contain the knowledge available at the time of training, and updating them is both time-consuming and costly. Retrieval Augmented Generation (RAG) has emerged in the literature as the preferred approach for injecting contextual information into Foundation Models. It prevails over techniques such as fine-tuning, which are less effective in dynamic, real-time scenarios like those found in urban environments. However, traditional RAG architectures, based on semantic databases, knowledge graphs, structured data, or AI-powered web searches, do not fully meet the demands of urban contexts. Urban environments are complex systems characterized by large volumes of interconnected data, frequent updates, real-time processing requirements, security needs, and strong links to the physical world. This work proposes a real-time spatial RAG architecture that defines the necessary components for the effective integration of generative AI into cities, leveraging temporal and spatial filtering capabilities through linked data. The proposed architecture is implemented using FIWARE, an ecosystem of software components to develop smart city solutions and digital twins. The design and implementation are demonstrated through the use case of a tourism assistant in the city of Madrid. The use case serves to validate the correct integration of Foundation Models through the proposed RAG architecture.
Related papers
- Predicting Large-scale Urban Network Dynamics with Energy-informed Graph Neural Diffusion [51.198001060683296]
Networked urban systems facilitate the flow of people, resources, and services.<n>Current models such as graph neural networks have shown promise but face a trade-off between efficacy and efficiency.<n>This paper addresses this trade-off by drawing inspiration from physical laws to inform essential model designs.
arXiv Detail & Related papers (2025-07-31T01:24:01Z) - UrbanMind: Towards Urban General Intelligence via Tool-Enhanced Retrieval-Augmented Generation and Multilevel Optimization [7.478830207921698]
Urban general intelligence (UGI) refers to the capacity of AI systems to autonomously perceive, reason, and act within dynamic and complex urban environments.<n>In this paper, we introduce UrbanMind, a tool-enhanced retrieval-augmented generation (RAG) framework designed to facilitate UGI.
arXiv Detail & Related papers (2025-07-07T06:57:34Z) - UrbanMind: Urban Dynamics Prediction with Multifaceted Spatial-Temporal Large Language Models [18.051209616917042]
UrbanMind is a novel spatial-temporal LLM framework for multifaceted urban dynamics prediction.<n>At its core, UrbanMind introduces Muffin-MAE, a multifaceted fusion masked autoencoder with specialized masking strategies.<n>Experiments on real-world urban datasets across multiple cities demonstrate that UrbanMind consistently outperforms state-of-the-art baselines.
arXiv Detail & Related papers (2025-05-16T19:38:06Z) - Collaborative Imputation of Urban Time Series through Cross-city Meta-learning [54.438991949772145]
We propose a novel collaborative imputation paradigm leveraging meta-learned implicit neural representations (INRs)<n>We then introduce a cross-city collaborative learning scheme through model-agnostic meta learning.<n>Experiments on a diverse urban dataset from 20 global cities demonstrate our model's superior imputation performance and generalizability.
arXiv Detail & Related papers (2025-01-20T07:12:40Z) - Leveraging Generative AI for Urban Digital Twins: A Scoping Review on the Autonomous Generation of Urban Data, Scenarios, Designs, and 3D City Models for Smart City Advancement [7.334114326621768]
Generative Artificial Intelligence (AI) models have demonstrated their unique values in data and code generation.
The survey starts with the introduction of popular generative AI models with their application areas, followed by a review of the existing urban science applications.
Based on the review, this survey discusses potential opportunities and technical strategies that integrate generative AI models into the next-generation urban digital twins.
arXiv Detail & Related papers (2024-05-29T19:23:07Z) - UrbanGPT: Spatio-Temporal Large Language Models [34.79169613947957]
We present the UrbanPT, which seamlessly integrates atemporal-temporal encoder with instruction-tuning paradigm.
We conduct extensive experiments on various public datasets, covering differenttemporal prediction tasks.
The results consistently demonstrate that our UrbanPT, with its carefully designed architecture, consistently outperforms state-of-the-art baselines.
arXiv Detail & Related papers (2024-02-25T12:37:29Z) - Spatio-Temporal Few-Shot Learning via Diffusive Neural Network Generation [25.916891462152044]
We propose a novel generative pre-training framework, GPD, for intricate few-shot learning with urban knowledge transfer.
We recast a generative diffusion model, which generates tailored neural networks guided by prompts.
GPD consistently outperforms state-of-the-art baselines on datasets for tasks such as traffic speed prediction and crowd flow prediction.
arXiv Detail & Related papers (2024-02-19T08:11:26Z) - Cross-City Matters: A Multimodal Remote Sensing Benchmark Dataset for
Cross-City Semantic Segmentation using High-Resolution Domain Adaptation
Networks [82.82866901799565]
We build a new set of multimodal remote sensing benchmark datasets (including hyperspectral, multispectral, SAR) for the study purpose of the cross-city semantic segmentation task.
Beyond the single city, we propose a high-resolution domain adaptation network, HighDAN, to promote the AI model's generalization ability from the multi-city environments.
HighDAN is capable of retaining the spatially topological structure of the studied urban scene well in a parallel high-to-low resolution fusion fashion.
arXiv Detail & Related papers (2023-09-26T23:55:39Z) - Unified Data Management and Comprehensive Performance Evaluation for
Urban Spatial-Temporal Prediction [Experiment, Analysis & Benchmark] [78.05103666987655]
This work addresses challenges in accessing and utilizing diverse urban spatial-temporal datasets.
We introduceatomic files, a unified storage format designed for urban spatial-temporal big data, and validate its effectiveness on 40 diverse datasets.
We conduct extensive experiments using diverse models and datasets, establishing a performance leaderboard and identifying promising research directions.
arXiv Detail & Related papers (2023-08-24T16:20:00Z) - LibCity: A Unified Library Towards Efficient and Comprehensive Urban
Spatial-Temporal Prediction [74.08181247675095]
There are limitations in the existing field, including open-source data being in various formats and difficult to use.
We propose LibCity, an open-source library that offers researchers a credible experimental tool and a convenient development framework.
arXiv Detail & Related papers (2023-04-27T17:19:26Z) - Methodological Foundation of a Numerical Taxonomy of Urban Form [62.997667081978825]
We present a method for numerical taxonomy of urban form derived from biological systematics.
We derive homogeneous urban tissue types and, by determining overall morphological similarity between them, generate a hierarchical classification of urban form.
After framing and presenting the method, we test it on two cities - Prague and Amsterdam.
arXiv Detail & Related papers (2021-04-30T12:47:52Z) - Modelling Urban Dynamics with Multi-Modal Graph Convolutional Networks [8.767281392253976]
We propose a novel deep learning framework which aims to better model the popularity and growth of urban venues.
We present our deep learning architecture which integrates both spatial and topological features into a temporal model which predicts the demand of a venue at the subsequent time-step.
Relative to state-of-the-art deep learning models, our model reduces the RSME by 28% in London and 13% in Paris.
arXiv Detail & Related papers (2021-04-29T20:00:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.