Predicting Large-scale Urban Network Dynamics with Energy-informed Graph Neural Diffusion
- URL: http://arxiv.org/abs/2508.00037v1
- Date: Thu, 31 Jul 2025 01:24:01 GMT
- Title: Predicting Large-scale Urban Network Dynamics with Energy-informed Graph Neural Diffusion
- Authors: Tong Nie, Jian Sun, Wei Ma,
- Abstract summary: Networked urban systems facilitate the flow of people, resources, and services.<n>Current models such as graph neural networks have shown promise but face a trade-off between efficacy and efficiency.<n>This paper addresses this trade-off by drawing inspiration from physical laws to inform essential model designs.
- Score: 51.198001060683296
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Networked urban systems facilitate the flow of people, resources, and services, and are essential for economic and social interactions. These systems often involve complex processes with unknown governing rules, observed by sensor-based time series. To aid decision-making in industrial and engineering contexts, data-driven predictive models are used to forecast spatiotemporal dynamics of urban systems. Current models such as graph neural networks have shown promise but face a trade-off between efficacy and efficiency due to computational demands. Hence, their applications in large-scale networks still require further efforts. This paper addresses this trade-off challenge by drawing inspiration from physical laws to inform essential model designs that align with fundamental principles and avoid architectural redundancy. By understanding both micro- and macro-processes, we present a principled interpretable neural diffusion scheme based on Transformer-like structures whose attention layers are induced by low-dimensional embeddings. The proposed scalable spatiotemporal Transformer (ScaleSTF), with linear complexity, is validated on large-scale urban systems including traffic flow, solar power, and smart meters, showing state-of-the-art performance and remarkable scalability. Our results constitute a fresh perspective on the dynamics prediction in large-scale urban networks.
Related papers
- NetFlowGen: Leveraging Generative Pre-training for Network Traffic Dynamics [72.95483148058378]
We propose to pre-train a general-purpose machine learning model to capture traffic dynamics with only traffic data from NetFlow records.<n>We address challenges such as unifying network feature representations, learning from large unlabeled traffic data volume, and testing on real downstream tasks in DDoS attack detection.
arXiv Detail & Related papers (2024-12-30T00:47:49Z) - AI Flow at the Network Edge [58.31090055138711]
AI Flow is a framework that streamlines the inference process by jointly leveraging the heterogeneous resources available across devices, edge nodes, and cloud servers.<n>This article serves as a position paper for identifying the motivation, challenges, and principles of AI Flow.
arXiv Detail & Related papers (2024-11-19T12:51:17Z) - TDNetGen: Empowering Complex Network Resilience Prediction with Generative Augmentation of Topology and Dynamics [14.25304439234864]
We introduce a novel resilience prediction framework for complex networks, designed to tackle this issue through generative data augmentation of network topology and dynamics.
Experiment results on three network datasets demonstrate that our proposed framework TDNetGen can achieve high prediction accuracy up to 85%-95%.
arXiv Detail & Related papers (2024-08-19T09:20:31Z) - Data-driven Energy Efficiency Modelling in Large-scale Networks: An Expert Knowledge and ML-based Approach [8.326834499339107]
This paper introduces the simulated reality of communication networks (SRCON) framework.
It harnesses live network data and employs a blend of machine learning (ML)- and expert-based models.
Results show significant gains over a state-of-the art method used by a operator for network energy efficiency modeling.
arXiv Detail & Related papers (2023-12-31T10:03:08Z) - Detecting Vulnerable Nodes in Urban Infrastructure Interdependent
Network [30.78792992230233]
We model the interdependent network as a heterogeneous graph and propose a system based on graph neural network with reinforcement learning.
The presented system leverages deep learning techniques to understand and analyze the heterogeneous graph, which enables us to capture the risk of cascade failure and discover vulnerable infrastructures of cities.
arXiv Detail & Related papers (2023-07-19T09:53:56Z) - Contextualizing MLP-Mixers Spatiotemporally for Urban Data Forecast at Scale [54.15522908057831]
We propose an adapted version of the computationally-Mixer for STTD forecast at scale.
Our results surprisingly show that this simple-yeteffective solution can rival SOTA baselines when tested on several traffic benchmarks.
Our findings contribute to the exploration of simple-yet-effective models for real-world STTD forecasting.
arXiv Detail & Related papers (2023-07-04T05:19:19Z) - Piecewise-Velocity Model for Learning Continuous-time Dynamic Node
Representations [0.0]
Piecewise-Veable Model (PiVeM) for representation of continuous-time dynamic networks.
We show that PiVeM can successfully represent network structure and dynamics in ultra-low two-dimensional spaces.
It outperforms relevant state-of-art methods in downstream tasks such as link prediction.
arXiv Detail & Related papers (2022-12-23T13:57:56Z) - Evaluating Distribution System Reliability with Hyperstructures Graph
Convolutional Nets [74.51865676466056]
We show how graph convolutional networks and hyperstructures representation learning framework can be employed for accurate, reliable, and computationally efficient distribution grid planning.
Our numerical experiments show that the proposed Hyper-GCNNs approach yields substantial gains in computational efficiency.
arXiv Detail & Related papers (2022-11-14T01:29:09Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
Data-driven modeling is an alternative paradigm that seeks to learn an approximation of the dynamics of a system using observations of the true system.
This paper provides a survey of the different ways to construct models of dynamical systems using neural networks.
In addition to the basic overview, we review the related literature and outline the most significant challenges from numerical simulations that this modeling paradigm must overcome.
arXiv Detail & Related papers (2021-11-02T10:51:42Z) - Knowledge- and Data-driven Services for Energy Systems using Graph
Neural Networks [0.9809636731336702]
We propose a data- and knowledge-driven probabilistic graphical model for energy systems based on the framework of graph neural networks (GNNs)
The model can explicitly factor in domain knowledge, in the form of grid topology or physics constraints, thus resulting in sparser architectures and much smaller parameters dimensionality.
Results obtained from a real-world smart-grid demonstration project show how the GNN was used to inform grid congestion predictions and market bidding services.
arXiv Detail & Related papers (2021-03-12T13:00:01Z) - Learning Contact Dynamics using Physically Structured Neural Networks [81.73947303886753]
We use connections between deep neural networks and differential equations to design a family of deep network architectures for representing contact dynamics between objects.
We show that these networks can learn discontinuous contact events in a data-efficient manner from noisy observations.
Our results indicate that an idealised form of touch feedback is a key component of making this learning problem tractable.
arXiv Detail & Related papers (2021-02-22T17:33:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.