論文の概要: SafeMate: A Modular RAG-Based Agent for Context-Aware Emergency Guidance
- arxiv url: http://arxiv.org/abs/2505.02306v4
- Date: Mon, 19 May 2025 15:39:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-20 14:57:10.642921
- Title: SafeMate: A Modular RAG-Based Agent for Context-Aware Emergency Guidance
- Title(参考訳): SafeMate: コンテキスト認識型緊急誘導のためのモジュールRAGベースのエージェント
- Authors: Junfeng Jiao, Jihyung Park, Yiming Xu, Kristen Sussman, Lucy Atkinson,
- Abstract要約: 我々は、一般的なユーザーに正確なコンテキスト認識ガイダンスを提供する検索強化AIアシスタントであるSafeMateを紹介する。
Model Context Protocol (MCP) 上に構築されたSafeMateは、ユーザクエリを動的にドキュメント検索、チェックリスト生成、構造化要約のためのツールにルーティングする。
- 参考スコア(独自算出の注目度): 4.68246531484007
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite the abundance of public safety documents and emergency protocols, most individuals remain ill-equipped to interpret and act on such information during crises. Traditional emergency decision support systems (EDSS) are designed for professionals and rely heavily on static documents like PDFs or SOPs, which are difficult for non-experts to navigate under stress. This gap between institutional knowledge and public accessibility poses a critical barrier to effective emergency preparedness and response. We introduce SafeMate, a retrieval-augmented AI assistant that delivers accurate, context-aware guidance to general users in both preparedness and active emergency scenarios. Built on the Model Context Protocol (MCP), SafeMate dynamically routes user queries to tools for document retrieval, checklist generation, and structured summarization. It uses FAISS with cosine similarity to identify relevant content from trusted sources.
- Abstract(参考訳): 公共の安全文書や緊急プロトコルが豊富にあるにもかかわらず、ほとんどの個人は、危機時にそのような情報を解釈し、行動することができないままである。
従来の緊急意思決定支援システム(EDSS)は専門家向けに設計されており、PDFやSOPのような静的文書に大きく依存している。
機関の知識と公共のアクセシビリティのギャップは、効果的な緊急準備と対応にとって重要な障壁となる。
我々はSafeMateを紹介した。これは検索強化されたAIアシスタントで、準備とアクティブな緊急シナリオの両方において、正確でコンテキスト対応のガイダンスを一般ユーザーに提供します。
Model Context Protocol (MCP) 上に構築されたSafeMateは、ユーザクエリを動的にドキュメント検索、チェックリスト生成、構造化要約のためのツールにルーティングする。
FAISSとコサインの類似性を利用して、信頼できる情報源から関連するコンテンツを識別する。
関連論文リスト
- Illusions of Relevance: Using Content Injection Attacks to Deceive Retrievers, Rerankers, and LLM Judges [52.96987928118327]
検索,リランカー,大型言語モデル(LLM)の埋め込みモデルは,コンテンツインジェクション攻撃に対して脆弱であることがわかった。
主な脅威は,(1) 意味不明な内容や有害な内容の挿入,(2) 関連性を高めるために,問合せ全体あるいはキークエリ用語の挿入,の2つである。
本研究は, 注射内容の配置や関連物質と非関連物質とのバランスなど, 攻撃の成功に影響を与える要因を系統的に検討した。
論文 参考訳(メタデータ) (2025-01-30T18:02:15Z) - Usage Governance Advisor: From Intent to AI Governance [4.49852442764084]
AIシステムの安全性を評価することは、それらをデプロイする組織にとって、厳しい関心事である。
本稿では,半構造化ガバナンス情報を作成するユーザガバナンスアドバイザを提案する。
論文 参考訳(メタデータ) (2024-12-02T20:36:41Z) - CrisisSense-LLM: Instruction Fine-Tuned Large Language Model for Multi-label Social Media Text Classification in Disaster Informatics [49.2719253711215]
本研究では,事前学習型大規模言語モデル(LLM)の強化による災害テキスト分類への新たなアプローチを提案する。
本手法では,災害関連ツイートから包括的インストラクションデータセットを作成し,それをオープンソース LLM の微調整に用いる。
この微調整モデルでは,災害関連情報の種類,情報化,人的援助の関与など,複数の側面を同時に分類することができる。
論文 参考訳(メタデータ) (2024-06-16T23:01:10Z) - Foveate, Attribute, and Rationalize: Towards Physically Safe and
Trustworthy AI [76.28956947107372]
包括的不安全テキストは、日常的なシナリオから生じる可能性のある特定の関心領域であり、有害なテキストを検出するのが困難である。
安全の文脈において、信頼に値する合理的な生成のために外部知識を活用する新しいフレームワークであるFARMを提案する。
実験の結果,FARMはSafeTextデータセットの最先端結果を得ることができ,安全性の分類精度が5.9%向上したことがわかった。
論文 参考訳(メタデータ) (2022-12-19T17:51:47Z) - Enriching Vulnerability Reports Through Automated and Augmented
Description Summarization [6.3455238301221675]
脆弱性の説明は、脆弱性情報をセキュリティアナリストに伝える上で重要な役割を果たす。
本稿では、第三者参照(ハイパーリンク)スクラップによる脆弱性記述を強化するパイプラインを考案する。
論文 参考訳(メタデータ) (2022-10-03T22:46:35Z) - Towards Automated Classification of Attackers' TTPs by combining NLP
with ML Techniques [77.34726150561087]
我々は,NLP(Natural Language Processing)と,研究におけるセキュリティ情報抽出に使用される機械学習技術の評価と比較を行った。
本研究では,攻撃者の戦術や手法に従って非構造化テキストを自動的に分類するデータ処理パイプラインを提案する。
論文 参考訳(メタデータ) (2022-07-18T09:59:21Z) - AI Agents in Emergency Response Applications [0.0]
救急隊員は、火災、医療、有害物質、産業事故、自然災害など様々な状況に対応している。
ミッションクリティカルな"エッジAI"の状況では、低レイテンシで信頼性の高い分析が必要になります。
本稿では、5Gサービスベースのアーキテクチャを介してAIエージェントをデプロイするためのエージェントベースアーキテクチャを提案する。
論文 参考訳(メタデータ) (2021-09-10T03:24:50Z) - Improving Community Resiliency and Emergency Response With Artificial
Intelligence [0.05541644538483946]
我々は、ステークホルダーが包括的で関連性があり、信頼できる情報にタイムリーにアクセスできるようにする、多段階の緊急対応ツールを目指しています。
本ツールは, 浸水リスク位置, 道路ネットワーク強度, 浸水マップ, 浸水地や被害インフラを推定するコンピュータビジョンセマンティックセマンティックセマンティックセグメンテーションなど, オープンソースの地理空間データの複数の層を符号化して構成する。
これらのデータレイヤを組み合わせて、緊急時の避難経路の検索や、最初に影響を受けたエリアで最初の応答者のために利用可能な宿泊場所のリストを提供するなど、機械学習アルゴリズムの入力データとして利用する。
論文 参考訳(メタデータ) (2020-05-28T18:05:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。