論文の概要: VAEmo: Efficient Representation Learning for Visual-Audio Emotion with Knowledge Injection
- arxiv url: http://arxiv.org/abs/2505.02331v1
- Date: Mon, 05 May 2025 03:00:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-06 18:49:35.550238
- Title: VAEmo: Efficient Representation Learning for Visual-Audio Emotion with Knowledge Injection
- Title(参考訳): VAEmo:知識注入による視覚・聴覚感情の効率的な表現学習
- Authors: Hao Cheng, Zhiwei Zhao, Yichao He, Zhenzhen Hu, Jia Li, Meng Wang, Richang Hong,
- Abstract要約: 本稿では,外部知識注入を用いた感情中心型VA表現学習のための効率的なフレームワークであるVAEmoを提案する。
VAEmoは、コンパクトな設計で最先端のパフォーマンスを実現し、統合されたクロスモーダルエンコーディングと感情認識のセマンティックガイダンスの利点を強調している。
- 参考スコア(独自算出の注目度): 50.57849622045192
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Audiovisual emotion recognition (AVER) aims to infer human emotions from nonverbal visual-audio (VA) cues, offering modality-complementary and language-agnostic advantages. However, AVER remains challenging due to the inherent ambiguity of emotional expressions, cross-modal expressive disparities, and the scarcity of reliably annotated data. Recent self-supervised AVER approaches have introduced strong multimodal representations, yet they predominantly rely on modality-specific encoders and coarse content-level alignment, limiting fine-grained emotional semantic modeling. To address these issues, we propose VAEmo, an efficient two-stage framework for emotion-centric joint VA representation learning with external knowledge injection. In Stage 1, a unified and lightweight representation network is pre-trained on large-scale speaker-centric VA corpora via masked reconstruction and contrastive objectives, mitigating the modality gap and learning expressive, complementary representations without emotion labels. In Stage 2, multimodal large language models automatically generate detailed affective descriptions according to our well-designed chain-of-thought prompting for only a small subset of VA samples; these rich textual semantics are then injected by aligning their corresponding embeddings with VA representations through dual-path contrastive learning, further bridging the emotion gap. Extensive experiments on multiple downstream AVER benchmarks show that VAEmo achieves state-of-the-art performance with a compact design, highlighting the benefit of unified cross-modal encoding and emotion-aware semantic guidance for efficient, generalizable VA emotion representations.
- Abstract(参考訳): 聴覚的感情認識(AVER)は、非言語的視覚音響(VA)の手がかりから人間の感情を推測することを目的としており、モダリティ補完的および言語に依存しない利点を提供する。
しかし、感情表現の本質的なあいまいさ、モーダルな表現の相違、確実な注釈付きデータの不足により、AVERは依然として困難である。
最近の自己監督型AVERアプローチは、強いマルチモーダル表現を導入しているが、それらは主にモダリティ固有のエンコーダと粗い内容レベルのアライメントに依存しており、きめ細かい感情的セマンティックモデリングを制限している。
これらの課題に対処するために,感情中心型共同VA表現学習のための効果的な2段階フレームワークであるVAEmoを提案する。
ステージ1では,大規模話者中心のVAコーパス上で,マスクによる再構成とコントラスト的目的を通じて,統一的で軽量な表現ネットワークを事前学習し,モダリティギャップを緩和し,感情ラベルのない相補的表現を学習する。
ステージ2では、多モーダルな大規模言語モデルによって、VAサンプルのごく一部のサブセットに対して、よく設計されたチェーン・オブ・プリートに従って、詳細な感情記述が自動的に生成され、さらに、このリッチなテキスト意味論は、二重パスのコントラスト学習を通じて、VA表現と対応する埋め込みを整列させて、感情ギャップをさらに埋めることで注入される。
複数の下流AVERベンチマークの大規模な実験により、VAEmoはコンパクトな設計で最先端のパフォーマンスを達成し、効率的で一般化可能なVA感情表現のためのクロスモーダルエンコーディングと感情認識のセマンティックガイダンスの利点を強調した。
関連論文リスト
- Contrastive Decoupled Representation Learning and Regularization for Speech-Preserving Facial Expression Manipulation [58.189703277322224]
音声保存表情操作(SPFEM)は、特定の参照感情を表示するために話頭を変更することを目的としている。
参照およびソース入力に存在する感情とコンテンツ情報は、SPFEMモデルに対して直接的かつ正確な監視信号を提供することができる。
コントラスト学習による指導として、コンテンツと感情の事前学習を提案し、分離されたコンテンツと感情表現を学習する。
論文 参考訳(メタデータ) (2025-04-08T04:34:38Z) - MAVEN: Multi-modal Attention for Valence-Arousal Emotion Network [6.304608172789466]
The proposed Multi-modal Attention for Valence-Arousal Emotion Network (MAVEN) integrates visual, audio, and textual modalities。
MAVENは、モダリティ固有のエンコーダを使用して、同期化されたビデオフレーム、オーディオセグメント、および書き起こしから特徴を抽出する。
このアーキテクチャは、会話ビデオにおける感情表現の微妙で過渡的な性質を捉え、現実の状況における感情認識を改善する。
論文 参考訳(メタデータ) (2025-03-16T19:32:32Z) - Enriching Multimodal Sentiment Analysis through Textual Emotional Descriptions of Visual-Audio Content [56.62027582702816]
マルチモーダル・センティメント・アナリティクスは、テキスト、音声、視覚データを融合することで人間の感情を解き放つことを目指している。
しかし、音声やビデオの表現の中で微妙な感情的なニュアンスを認識することは、恐ろしい挑戦だ。
テキストの感情記述に基づくプログレッシブ・フュージョン・フレームワークであるDEVAを紹介する。
論文 参考訳(メタデータ) (2024-12-12T11:30:41Z) - Attention-based Interactive Disentangling Network for Instance-level
Emotional Voice Conversion [81.1492897350032]
感情音声変換(Emotional Voice Conversion)は、非感情成分を保存しながら、与えられた感情に応じて音声を操作することを目的とする。
本稿では,音声変換にインスタンスワイドな感情知識を活用する,意図に基づく対話型ディスタングネットワーク(AINN)を提案する。
論文 参考訳(メタデータ) (2023-12-29T08:06:45Z) - Disentangled Variational Autoencoder for Emotion Recognition in
Conversations [14.92924920489251]
会話(ERC)における感情認識のためのVAD-VAE(VAD-VAE)を提案する。
VAD-VAEは3つをアンタングルし、Valence-Arousal-Dominance(VAD)を潜在空間から表現する。
実験により、VAD-VAEは2つのデータセット上で最先端のモデルより優れていることが示された。
論文 参考訳(メタデータ) (2023-05-23T13:50:06Z) - Disentangling Prosody Representations with Unsupervised Speech
Reconstruction [22.873286925385543]
本研究の目的は、教師なし再構成に基づく音声からの感情的韻律のゆがみに対処することである。
具体的には,提案した音声再構成モデルProsody2Vecの3つの重要なコンポーネントを同定し,設計し,実装し,統合する。
まず, 感情的コーパスのProsody2Vec表現を事前訓練し, 特定のデータセットのモデルを微調整し, 音声感情認識(SER)と感情音声変換(EVC)タスクを実行する。
論文 参考訳(メタデータ) (2022-12-14T01:37:35Z) - VISTANet: VIsual Spoken Textual Additive Net for Interpretable Multimodal Emotion Recognition [21.247650660908484]
本稿では、VISTANet(Visual Textual Additive Net)というマルチモーダル感情認識システムを提案する。
VISTANetは、早期と後期の融合のハイブリッドを用いて、画像、音声、テキストのモダリティから情報を融合する。
KAAP技術は、特定の感情のクラスを予測するために、各モダリティとそれに対応する特徴の寄与を計算する。
論文 参考訳(メタデータ) (2022-08-24T11:35:51Z) - MEmoBERT: Pre-training Model with Prompt-based Learning for Multimodal
Emotion Recognition [118.73025093045652]
マルチモーダル感情認識のための事前学習モデル textbfMEmoBERT を提案する。
従来の「訓練前、微妙な」パラダイムとは異なり、下流の感情分類タスクをマスク付きテキスト予測として再構成するプロンプトベースの手法を提案する。
提案するMEMOBERTは感情認識性能を大幅に向上させる。
論文 参考訳(メタデータ) (2021-10-27T09:57:00Z) - An Attribute-Aligned Strategy for Learning Speech Representation [57.891727280493015]
属性選択機構によってこれらの問題に柔軟に対処できる音声表現を導出する属性整合学習戦略を提案する。
具体的には、音声表現を属性依存ノードに分解する層式表現可変オートエンコーダ(LR-VAE)を提案する。
提案手法は,IDのないSER上での競合性能と,無感情SV上でのより良い性能を実現する。
論文 参考訳(メタデータ) (2021-06-05T06:19:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。