論文の概要: Sharpness-Aware Minimization with Z-Score Gradient Filtering
- arxiv url: http://arxiv.org/abs/2505.02369v4
- Date: Sun, 17 Aug 2025 07:30:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-19 14:49:09.940716
- Title: Sharpness-Aware Minimization with Z-Score Gradient Filtering
- Title(参考訳): Zスコア勾配フィルタによるシャープネス認識最小化
- Authors: Vincent-Daniel Yun,
- Abstract要約: シャープネス・アウェアの最小化は、高い曲率の方向に向かってパラメータを摂動することで一般化を改善する。
本稿では,Zスコアに基づくフィルタを各層の勾配に適用するZスコアフィルタ型シャープネス認識最小化を提案する。
実験の結果,提案手法はシャープネス・アウェア・最小化とその変種と比較してテスト精度を常に向上することがわかった。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Deep neural networks achieve high performance across many domains but can still face challenges in generalization when optimization is influenced by small or noisy gradient components. Sharpness-Aware Minimization improves generalization by perturbing parameters toward directions of high curvature, but it uses the entire gradient vector, which means that small or noisy components may affect the ascent step and cause the optimizer to miss optimal solutions. We propose Z-Score Filtered Sharpness-Aware Minimization, which applies Z-score based filtering to gradients in each layer. Instead of using all gradient components, a mask is constructed to retain only the top percentile with the largest absolute Z-scores. The percentile threshold $Q_p$ determines how many components are kept, so that the ascent step focuses on directions that stand out most compared to the average of the layer. This selective perturbation refines the search toward flatter minima while reducing the influence of less significant gradients. Experiments on CIFAR-10, CIFAR-100, and Tiny-ImageNet with architectures including ResNet, VGG, and Vision Transformers show that the proposed method consistently improves test accuracy compared to Sharpness-Aware Minimization and its variants.
- Abstract(参考訳): ディープニューラルネットワークは多くのドメインで高いパフォーマンスを達成するが、最適化が小さなあるいはノイズの多い勾配成分の影響を受ければ、一般化の課題に直面する可能性がある。
シャープネス・アウェアの最小化は、パラメータを高い曲率の方向に向かって摂動することで一般化を改善するが、勾配ベクトル全体を使用する。
本稿では,Zスコアに基づくフィルタを各層の勾配に適用するZスコアフィルタ型シャープネス認識最小化を提案する。
すべての勾配成分を使用する代わりに、マスクは最大の絶対Zスコアを持つトップパーセンタイルのみを保持するように構成される。
パーセンタイル閾値$Q_p$は、どれだけのコンポーネントが保持されているかを決定するので、上昇ステップは、レイヤの平均よりも最も目立つ方向に焦点を当てる。
この選択的摂動は、より顕著な勾配の影響を低減しつつ、より平坦なミニマへの探索を洗練させる。
The experiments on CIFAR-10, CIFAR-100, Tiny-ImageNet with architecturesNet, VGG, Vision Transformers shows that this proposed method is consistent improve test accuracy than Sharpness-Aware Minimization and its variants。
関連論文リスト
- GCSAM: Gradient Centralized Sharpness Aware Minimization [45.05109291721135]
シャープネス認識最小化(SAM)は、ロスランドスケープのシャープネスを低減するための効果的な最適化手法として登場した。
本稿では、勾配集中化(GC)を組み込んで収束を安定化・加速するグラディエント・シャープネス・アウェア最小化(GCSAM)を提案する。
GCSAMは、一般化と計算効率の点でSAMとAdamを一貫して上回っている。
論文 参考訳(メタデータ) (2025-01-20T16:42:31Z) - Fast Graph Sharpness-Aware Minimization for Enhancing and Accelerating Few-Shot Node Classification [53.727688136434345]
グラフニューラルネットワーク(GNN)はノード分類において優れた性能を示している。
高速グラフシャープネス認識最小化(FGSAM)を提案する。
提案アルゴリズムは,FSNCタスクにおいて,計算コストの低い標準SAMよりも優れる。
論文 参考訳(メタデータ) (2024-10-22T09:33:29Z) - Friendly Sharpness-Aware Minimization [62.57515991835801]
シャープネス・アウェアの最小化(SAM)は、トレーニング損失とロスシャープネスの両方を最小化することにより、ディープニューラルネットワークトレーニングの改善に役立っている。
対向性摂動におけるバッチ特異的勾配雑音の主な役割,すなわち現在のミニバッチ勾配について検討する。
逆勾配雑音成分を分解することにより、全勾配のみに依存すると一般化が低下し、除くと性能が向上することがわかった。
論文 参考訳(メタデータ) (2024-03-19T01:39:33Z) - CR-SAM: Curvature Regularized Sharpness-Aware Minimization [8.248964912483912]
Sharpness-Aware Minimization (SAM) は,1段階の勾配上昇を近似として,最悪のケース損失を最小限に抑え,一般化性を高めることを目的としている。
本稿では,トレーニングとテストセットの両面における損失景観の曲率を正確に測定する正規化ヘッセントレースを提案する。
特に、損失景観の過度な非線形性に対抗するために、曲率正規化SAM(CR-SAM)を提案する。
論文 参考訳(メタデータ) (2023-12-21T03:46:29Z) - Systematic Investigation of Sparse Perturbed Sharpness-Aware
Minimization Optimizer [158.2634766682187]
ディープニューラルネットワークは、複雑で非構造的なロスランドスケープのため、しばしば一般化の貧弱さに悩まされる。
SharpnessAware Minimization (SAM) は、摂動を加える際の景観の変化を最小限に抑えることで損失を平滑化するポピュラーなソリューションである。
本稿では,二元マスクによる摂動を効果的かつ効果的に行う訓練手法であるスパースSAMを提案する。
論文 参考訳(メタデータ) (2023-06-30T09:33:41Z) - Normalization Layers Are All That Sharpness-Aware Minimization Needs [53.799769473526275]
シャープネス認識最小化(SAM)は,ミニマのシャープネスを低減するために提案された。
SAMの逆数ステップにおけるアフィン正規化パラメータ(典型的には総パラメータの0.1%)のみの摂動は、全てのパラメータの摂動よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-06-07T08:05:46Z) - Sharpness-Aware Training for Free [163.1248341911413]
シャープネスを意識した最小化(SAM)は、損失ランドスケープの幾何学を反映したシャープネス尺度の最小化が一般化誤差を著しく減少させることを示した。
シャープネス・アウェア・トレーニング・フリー(SAF)は、シャープランドスケープをベース上でほぼゼロの計算コストで軽減する。
SAFは、改善された能力で最小限の平らな収束を保証する。
論文 参考訳(メタデータ) (2022-05-27T16:32:43Z) - Efficient Sharpness-aware Minimization for Improved Training of Neural
Networks [146.2011175973769]
本稿では,SAM s の効率を高コストで向上する高効率シャープネス認識最小化器 (M) を提案する。
Mには、Stochastic Weight PerturbationとSharpness-Sensitive Data Selectionという、2つの新しい効果的なトレーニング戦略が含まれている。
我々は、CIFARとImageNetデータセットの広範な実験を通して、ESAMはSAMよりも100%余分な計算を40%のvis-a-visベースに必要とせずに効率を向上させることを示した。
論文 参考訳(メタデータ) (2021-10-07T02:20:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。