SuperEdit: Rectifying and Facilitating Supervision for Instruction-Based Image Editing
- URL: http://arxiv.org/abs/2505.02370v1
- Date: Mon, 05 May 2025 05:19:40 GMT
- Title: SuperEdit: Rectifying and Facilitating Supervision for Instruction-Based Image Editing
- Authors: Ming Li, Xin Gu, Fan Chen, Xiaoying Xing, Longyin Wen, Chen Chen, Sijie Zhu,
- Abstract summary: Existing datasets are typically constructed using various automated methods, leading to noisy supervision signals.<n>Recent efforts attempt to improve editing models through generating higher-quality edited images, pre-training on recognition tasks, or introducing vision-language models (VLMs) but fail to resolve this fundamental issue.<n>In this paper, we offer a novel solution by constructing more effective editing instructions for given image pairs.
- Score: 25.8179737362091
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Due to the challenges of manually collecting accurate editing data, existing datasets are typically constructed using various automated methods, leading to noisy supervision signals caused by the mismatch between editing instructions and original-edited image pairs. Recent efforts attempt to improve editing models through generating higher-quality edited images, pre-training on recognition tasks, or introducing vision-language models (VLMs) but fail to resolve this fundamental issue. In this paper, we offer a novel solution by constructing more effective editing instructions for given image pairs. This includes rectifying the editing instructions to better align with the original-edited image pairs and using contrastive editing instructions to further enhance their effectiveness. Specifically, we find that editing models exhibit specific generation attributes at different inference steps, independent of the text. Based on these prior attributes, we define a unified guide for VLMs to rectify editing instructions. However, there are some challenging editing scenarios that cannot be resolved solely with rectified instructions. To this end, we further construct contrastive supervision signals with positive and negative instructions and introduce them into the model training using triplet loss, thereby further facilitating supervision effectiveness. Our method does not require the VLM modules or pre-training tasks used in previous work, offering a more direct and efficient way to provide better supervision signals, and providing a novel, simple, and effective solution for instruction-based image editing. Results on multiple benchmarks demonstrate that our method significantly outperforms existing approaches. Compared with previous SOTA SmartEdit, we achieve 9.19% improvements on the Real-Edit benchmark with 30x less training data and 13x smaller model size.
Related papers
- Image Editing As Programs with Diffusion Models [69.05164729625052]
We introduce Image Editing As Programs (IEAP), a unified image editing framework built upon the Diffusion Transformer (DiT) architecture.<n>IEAP approaches instructional editing through a reductionist lens, decomposing complex editing instructions into sequences of atomic operations.<n>Our framework delivers superior accuracy and semantic fidelity, particularly for complex, multi-step instructions.
arXiv Detail & Related papers (2025-06-04T16:57:24Z) - Beyond Editing Pairs: Fine-Grained Instructional Image Editing via Multi-Scale Learnable Regions [20.617718631292696]
We develop a novel paradigm for instruction-driven image editing that leverages widely available and enormous text-image pairs.<n>Our approach introduces a multi-scale learnable region to localize and guide the editing process.<n>By treating the alignment between images and their textual descriptions as supervision and learning to generate task-specific editing regions, our method achieves high-fidelity, precise, and instruction-consistent image editing.
arXiv Detail & Related papers (2025-05-25T22:40:59Z) - FireEdit: Fine-grained Instruction-based Image Editing via Region-aware Vision Language Model [54.693572837423226]
FireEdit is an innovative Fine-grained Instruction-based image editing framework that exploits a REgion-aware VLM.<n>FireEdit is designed to accurately comprehend user instructions and ensure effective control over the editing process.<n>Our approach surpasses the state-of-the-art instruction-based image editing methods.
arXiv Detail & Related papers (2025-03-25T16:59:42Z) - UIP2P: Unsupervised Instruction-based Image Editing via Cycle Edit Consistency [69.33072075580483]
We propose an unsupervised model for instruction-based image editing that eliminates the need for ground-truth edited images during training.<n>Our method addresses these challenges by introducing a novel editing mechanism called Cycle Edit Consistency ( CEC)<n> CEC applies forward and backward edits in one training step and enforces consistency in image and attention spaces.
arXiv Detail & Related papers (2024-12-19T18:59:58Z) - AnyEdit: Mastering Unified High-Quality Image Editing for Any Idea [88.79769371584491]
We present AnyEdit, a comprehensive multi-modal instruction editing dataset.<n>We ensure the diversity and quality of the AnyEdit collection through three aspects: initial data diversity, adaptive editing process, and automated selection of editing results.<n>Experiments on three benchmark datasets show that AnyEdit consistently boosts the performance of diffusion-based editing models.
arXiv Detail & Related papers (2024-11-24T07:02:56Z) - InstructBrush: Learning Attention-based Instruction Optimization for Image Editing [54.07526261513434]
InstructBrush is an inversion method for instruction-based image editing methods.
It extracts editing effects from image pairs as editing instructions, which are further applied for image editing.
Our approach achieves superior performance in editing and is more semantically consistent with the target editing effects.
arXiv Detail & Related papers (2024-03-27T15:03:38Z) - Emu Edit: Precise Image Editing via Recognition and Generation Tasks [62.95717180730946]
We present Emu Edit, a multi-task image editing model which sets state-of-the-art results in instruction-based image editing.
We train it to multi-task across an unprecedented range of tasks, such as region-based editing, free-form editing, and Computer Vision tasks.
We show that Emu Edit can generalize to new tasks, such as image inpainting, super-resolution, and compositions of editing tasks, with just a few labeled examples.
arXiv Detail & Related papers (2023-11-16T18:55:58Z) - LEDITS: Real Image Editing with DDPM Inversion and Semantic Guidance [0.0]
LEDITS is a combined lightweight approach for real-image editing, incorporating the Edit Friendly DDPM inversion technique with Semantic Guidance.
This approach achieves versatile edits, both subtle and extensive as well as alterations in composition and style, while requiring no optimization nor extensions to the architecture.
arXiv Detail & Related papers (2023-07-02T09:11:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.