Image Editing As Programs with Diffusion Models
- URL: http://arxiv.org/abs/2506.04158v1
- Date: Wed, 04 Jun 2025 16:57:24 GMT
- Title: Image Editing As Programs with Diffusion Models
- Authors: Yujia Hu, Songhua Liu, Zhenxiong Tan, Xingyi Yang, Xinchao Wang,
- Abstract summary: We introduce Image Editing As Programs (IEAP), a unified image editing framework built upon the Diffusion Transformer (DiT) architecture.<n>IEAP approaches instructional editing through a reductionist lens, decomposing complex editing instructions into sequences of atomic operations.<n>Our framework delivers superior accuracy and semantic fidelity, particularly for complex, multi-step instructions.
- Score: 69.05164729625052
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While diffusion models have achieved remarkable success in text-to-image generation, they encounter significant challenges with instruction-driven image editing. Our research highlights a key challenge: these models particularly struggle with structurally inconsistent edits that involve substantial layout changes. To mitigate this gap, we introduce Image Editing As Programs (IEAP), a unified image editing framework built upon the Diffusion Transformer (DiT) architecture. At its core, IEAP approaches instructional editing through a reductionist lens, decomposing complex editing instructions into sequences of atomic operations. Each operation is implemented via a lightweight adapter sharing the same DiT backbone and is specialized for a specific type of edit. Programmed by a vision-language model (VLM)-based agent, these operations collaboratively support arbitrary and structurally inconsistent transformations. By modularizing and sequencing edits in this way, IEAP generalizes robustly across a wide range of editing tasks, from simple adjustments to substantial structural changes. Extensive experiments demonstrate that IEAP significantly outperforms state-of-the-art methods on standard benchmarks across various editing scenarios. In these evaluations, our framework delivers superior accuracy and semantic fidelity, particularly for complex, multi-step instructions. Codes are available at https://github.com/YujiaHu1109/IEAP.
Related papers
- Beyond Editing Pairs: Fine-Grained Instructional Image Editing via Multi-Scale Learnable Regions [20.617718631292696]
We develop a novel paradigm for instruction-driven image editing that leverages widely available and enormous text-image pairs.<n>Our approach introduces a multi-scale learnable region to localize and guide the editing process.<n>By treating the alignment between images and their textual descriptions as supervision and learning to generate task-specific editing regions, our method achieves high-fidelity, precise, and instruction-consistent image editing.
arXiv Detail & Related papers (2025-05-25T22:40:59Z) - SPICE: A Synergistic, Precise, Iterative, and Customizable Image Editing Workflow [8.850778795270351]
SPICE is a training-free workflow that accepts arbitrary resolutions and aspect ratios, accurately follows user requirements, and improves image quality consistently.<n> SPICE outperforms state-of-the-art baselines on a challenging realistic image-editing dataset.
arXiv Detail & Related papers (2025-04-13T19:13:04Z) - BrushEdit: All-In-One Image Inpainting and Editing [76.93556996538398]
BrushEdit is a novel inpainting-based instruction-guided image editing paradigm.<n>We devise a system enabling free-form instruction editing by integrating MLLMs and a dual-branch image inpainting model.<n>Our framework effectively combines MLLMs and inpainting models, achieving superior performance across seven metrics.
arXiv Detail & Related papers (2024-12-13T17:58:06Z) - Task-Oriented Diffusion Inversion for High-Fidelity Text-based Editing [60.730661748555214]
We introduce textbfTask-textbfOriented textbfDiffusion textbfInversion (textbfTODInv), a novel framework that inverts and edits real images tailored to specific editing tasks.
ToDInv seamlessly integrates inversion and editing through reciprocal optimization, ensuring both high fidelity and precise editability.
arXiv Detail & Related papers (2024-08-23T22:16:34Z) - FunEditor: Achieving Complex Image Edits via Function Aggregation with Diffusion Models [15.509233098264513]
Diffusion models have demonstrated outstanding performance in generative tasks, making them ideal candidates for image editing.<n>We introduce FunEditor, an efficient diffusion model designed to learn atomic editing functions and perform complex edits by aggregating simpler functions.<n>With only 4 steps of inference, FunEditor achieves 5-24x inference speedups over existing popular methods.
arXiv Detail & Related papers (2024-08-16T02:33:55Z) - Emu Edit: Precise Image Editing via Recognition and Generation Tasks [62.95717180730946]
We present Emu Edit, a multi-task image editing model which sets state-of-the-art results in instruction-based image editing.
We train it to multi-task across an unprecedented range of tasks, such as region-based editing, free-form editing, and Computer Vision tasks.
We show that Emu Edit can generalize to new tasks, such as image inpainting, super-resolution, and compositions of editing tasks, with just a few labeled examples.
arXiv Detail & Related papers (2023-11-16T18:55:58Z) - Object-aware Inversion and Reassembly for Image Editing [61.19822563737121]
We propose Object-aware Inversion and Reassembly (OIR) to enable object-level fine-grained editing.
We use our search metric to find the optimal inversion step for each editing pair when editing an image.
Our method achieves superior performance in editing object shapes, colors, materials, categories, etc., especially in multi-object editing scenarios.
arXiv Detail & Related papers (2023-10-18T17:59:02Z) - LEDITS: Real Image Editing with DDPM Inversion and Semantic Guidance [0.0]
LEDITS is a combined lightweight approach for real-image editing, incorporating the Edit Friendly DDPM inversion technique with Semantic Guidance.
This approach achieves versatile edits, both subtle and extensive as well as alterations in composition and style, while requiring no optimization nor extensions to the architecture.
arXiv Detail & Related papers (2023-07-02T09:11:09Z) - EditGAN: High-Precision Semantic Image Editing [120.49401527771067]
EditGAN is a novel method for high quality, high precision semantic image editing.
We show that EditGAN can manipulate images with an unprecedented level of detail and freedom.
We can also easily combine multiple edits and perform plausible edits beyond EditGAN training data.
arXiv Detail & Related papers (2021-11-04T22:36:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.