LAMeD: LLM-generated Annotations for Memory Leak Detection
- URL: http://arxiv.org/abs/2505.02376v1
- Date: Mon, 05 May 2025 05:34:33 GMT
- Title: LAMeD: LLM-generated Annotations for Memory Leak Detection
- Authors: Ekaterina Shemetova, Ilya Shenbin, Ivan Smirnov, Anton Alekseev, Alexey Rukhovich, Sergey Nikolenko, Vadim Lomshakov, Irina Piontkovskaya,
- Abstract summary: We present LAMeD, a novel approach to automatically generate function-specific annotations.<n>When integrated with analyzers such as Cooddy, LAMeD significantly improves memory leak detection and reduces path explosion.
- Score: 5.529919602615033
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Static analysis tools are widely used to detect software bugs and vulnerabilities but often struggle with scalability and efficiency in complex codebases. Traditional approaches rely on manually crafted annotations -- labeling functions as sources or sinks -- to track data flows, e.g., ensuring that allocated memory is eventually freed, and code analysis tools such as CodeQL, Infer, or Cooddy can use function specifications, but manual annotation is laborious and error-prone, especially for large or third-party libraries. We present LAMeD (LLM-generated Annotations for Memory leak Detection), a novel approach that leverages large language models (LLMs) to automatically generate function-specific annotations. When integrated with analyzers such as Cooddy, LAMeD significantly improves memory leak detection and reduces path explosion. We also suggest directions for extending LAMeD to broader code analysis.
Related papers
- Sparse-dLLM: Accelerating Diffusion LLMs with Dynamic Cache Eviction [58.044803442346115]
Diffusion Large Language Models (dLLMs) enable breakthroughs in reasoning and parallel decoding but suffer from prohibitive computational complexity and memory overhead during inference.<n>We propose Sparse-dLLM, the first training-free framework integrating dynamic cache eviction with sparse attention via delayed bidirectional sparse caching.
arXiv Detail & Related papers (2025-08-04T16:14:03Z) - Tracing Errors, Constructing Fixes: Repository-Level Memory Error Repair via Typestate-Guided Context Retrieval [9.737526306478598]
This paper introduces LTFix, a novel approach that harnesses the potential of Large Language Models (LLMs) for automated memory error repair.<n>Our approach utilizes a finite typestate automaton to guide the tracking of error-propagation paths and context trace, capturing both spatial (memory states) and temporal (execution history) dimensions of error behavior.
arXiv Detail & Related papers (2025-06-23T08:30:00Z) - LeakGuard: Detecting Memory Leaks Accurately and Scalably [3.256598917442277]
LeakGuard is a memory leak detection tool which provides satisfactory balance of accuracy and scalability.<n>For accuracy, LeakGuard analyzes the behaviors of library and developer-defined memory allocation and deallocation functions.<n>For scalability, LeakGuard examines each function of interest independently by using its function summary and under-constrained symbolic execution technique.
arXiv Detail & Related papers (2025-04-06T09:11:37Z) - Utilizing Precise and Complete Code Context to Guide LLM in Automatic False Positive Mitigation [3.0538467265507574]
Application Security Testing(SAST) tools are crucial for early bug detection and code quality but often generate false positives that slow development.
Large Language Models, adept at understanding natural language and code, offer promising ways to improve the accuracy and usability of SAST tools.
Our work emphasizes the critical impact of precise and complete code context and highlights the potential of combining program analysis with LLMs.
arXiv Detail & Related papers (2024-11-05T13:24:56Z) - MemLLM: Finetuning LLMs to Use An Explicit Read-Write Memory [49.96019697955383]
We introduce MemLLM, a novel method of enhancing large language models (LLMs) by integrating a structured and explicit read-and-write memory module.<n>Our experiments indicate that MemLLM enhances the LLM's performance and interpretability, in language modeling in general and knowledge-intensive tasks in particular.
arXiv Detail & Related papers (2024-04-17T18:13:16Z) - Perplexed: Understanding When Large Language Models are Confused [3.4208414448496027]
This paper introduces perplexed, a library for exploring where a language model is perplexed.
We conducted a case study focused on Large Language Models (LLMs) for code generation using an additional tool we built to help with the analysis of code models called codetokenizer.
We found that our studied code LLMs had their worst performance on coding structures where the code was not syntactically correct.
arXiv Detail & Related papers (2024-04-09T22:03:39Z) - CodecLM: Aligning Language Models with Tailored Synthetic Data [51.59223474427153]
We introduce CodecLM, a framework for adaptively generating high-quality synthetic data for instruction-following abilities.
We first encode seed instructions into metadata, which are concise keywords generated on-the-fly to capture the target instruction distribution.
We also introduce Self-Rubrics and Contrastive Filtering during decoding to tailor data-efficient samples.
arXiv Detail & Related papers (2024-04-08T21:15:36Z) - FoC: Figure out the Cryptographic Functions in Stripped Binaries with LLMs [51.898805184427545]
We propose a novel framework called FoC to Figure out the Cryptographic functions in stripped binaries.<n>We first build a binary large language model (FoC-BinLLM) to summarize the semantics of cryptographic functions in natural language.<n>We then build a binary code similarity model (FoC-Sim) upon the FoC-BinLLM to create change-sensitive representations and use it to retrieve similar implementations of unknown cryptographic functions in a database.
arXiv Detail & Related papers (2024-03-27T09:45:33Z) - LLM Inference Unveiled: Survey and Roofline Model Insights [62.92811060490876]
Large Language Model (LLM) inference is rapidly evolving, presenting a unique blend of opportunities and challenges.
Our survey stands out from traditional literature reviews by not only summarizing the current state of research but also by introducing a framework based on roofline model.
This framework identifies the bottlenecks when deploying LLMs on hardware devices and provides a clear understanding of practical problems.
arXiv Detail & Related papers (2024-02-26T07:33:05Z) - LLMDFA: Analyzing Dataflow in Code with Large Language Models [8.92611389987991]
This paper presents LLMDFA, a compilation-free and customizable dataflow analysis framework.
We decompose the problem into several subtasks and introduce a series of novel strategies.
On average, LLMDFA achieves 87.10% precision and 80.77% recall, surpassing existing techniques with F1 score improvements of up to 0.35.
arXiv Detail & Related papers (2024-02-16T15:21:35Z) - ZeroLeak: Using LLMs for Scalable and Cost Effective Side-Channel
Patching [6.556868623811133]
Security critical software, e.g., OpenSSL, comes with numerous side-channel leakages left unpatched due to a lack of resources or experts.
We explore the use of Large Language Models (LLMs) in generating patches for vulnerable code with microarchitectural side-channel leakages.
arXiv Detail & Related papers (2023-08-24T20:04:36Z) - LLMDet: A Third Party Large Language Models Generated Text Detection
Tool [119.0952092533317]
Large language models (LLMs) are remarkably close to high-quality human-authored text.
Existing detection tools can only differentiate between machine-generated and human-authored text.
We propose LLMDet, a model-specific, secure, efficient, and extendable detection tool.
arXiv Detail & Related papers (2023-05-24T10:45:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.