A probabilistic view on Riemannian machine learning models for SPD matrices
- URL: http://arxiv.org/abs/2505.02402v1
- Date: Mon, 05 May 2025 06:50:06 GMT
- Title: A probabilistic view on Riemannian machine learning models for SPD matrices
- Authors: Thibault de Surrel, Florian Yger, Fabien Lotte, Sylvain Chevallier,
- Abstract summary: We show how different machine learning tools on the $mathcalP_d$ of Symmetric Positive Definite (SPD) matrices can be united under a probabilistic framework.<n>By showing that those distributions are pervasive in the tools used on $mathcalP_d$, we allow for other machine learning tools to be extended to $mathcalP_d$.
- Score: 6.7523635840772505
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The goal of this paper is to show how different machine learning tools on the Riemannian manifold $\mathcal{P}_d$ of Symmetric Positive Definite (SPD) matrices can be united under a probabilistic framework. For this, we will need several Gaussian distributions defined on $\mathcal{P}_d$. We will show how popular classifiers on $\mathcal{P}_d$ can be reinterpreted as Bayes Classifiers using these Gaussian distributions. These distributions will also be used for outlier detection and dimension reduction. By showing that those distributions are pervasive in the tools used on $\mathcal{P}_d$, we allow for other machine learning tools to be extended to $\mathcal{P}_d$.
Related papers
- Beyond Laplace and Gaussian: Exploring the Generalized Gaussian Mechanism for Private Machine Learning [49.66162382667325]
We investigate the Generalized Gaussian mechanism, which samples the additive noise term $x$ with probability proportional to $e-frac| x |sigmabeta $ for some $beta geq 1$.<n>We show that privacy accounting for the GG Mechanism and its variants is independent, which substantially improves computational costs of privacy accounting.
arXiv Detail & Related papers (2025-06-14T15:49:25Z) - Outsourced diffusion sampling: Efficient posterior inference in latent spaces of generative models [65.71506381302815]
We propose amortize the cost of sampling from a posterior distribution of the form $p(mathbfxmidmathbfy) propto p_theta(mathbfx)$.<n>For many models and constraints of interest, the posterior in the noise space is smoother than the posterior in the data space, making it more amenable to such amortized inference.
arXiv Detail & Related papers (2025-02-10T19:49:54Z) - SoS Certifiability of Subgaussian Distributions and its Algorithmic Applications [37.208622097149714]
We prove that there is a universal constant $C>0$ so that for every $d inmathbb N$, every centered subgaussian distribution $mathcal D$ on $mathbb Rd$, and every even $p inmathbb N$, the $d-optimal inmathbb N$, and the $d-optimal inmathbb N$.
This establishes that every subgaussian distribution is emphS-certifiably subgaussian -- a condition that yields efficient learning algorithms for a wide variety of
arXiv Detail & Related papers (2024-10-28T16:36:58Z) - SPD-DDPM: Denoising Diffusion Probabilistic Models in the Symmetric
Positive Definite Space [47.65912121120524]
We propose a novel generative model, termed SPD-DDPM, to handle large-scale data.
Our model is able to estimate $p(X)$ unconditionally and flexibly without giving $y$.
Experiment results on toy data and real taxi data demonstrate that our models effectively fit the data distribution both unconditionally and unconditionally.
arXiv Detail & Related papers (2023-12-13T15:08:54Z) - Robust Mean Estimation Without Moments for Symmetric Distributions [7.105512316884493]
We show that for a large class of symmetric distributions, the same error as in the Gaussian setting can be achieved efficiently.
We propose a sequence of efficient algorithms that approaches this optimal error.
Our algorithms are based on a generalization of the well-known filtering technique.
arXiv Detail & Related papers (2023-02-21T17:52:23Z) - On Fast Johnson-Lindernstrauss Embeddings of Compact Submanifolds of
$\mathbb{R}^N$ with Boundary [0.4125187280299246]
We consider the probability that a random matrix $A in mathbbRm times N$ will serve as a bi-Lipschitz function $A: mathcalM rightarrow mathbbRm$ with bi-Lipschitz constants close to one.
We present a new class of highly structured distributions for embedding sufficiently low-dimensional submanifolds of $mathbbRN$.
arXiv Detail & Related papers (2021-10-08T15:27:52Z) - Random matrices in service of ML footprint: ternary random features with
no performance loss [55.30329197651178]
We show that the eigenspectrum of $bf K$ is independent of the distribution of the i.i.d. entries of $bf w$.
We propose a novel random technique, called Ternary Random Feature (TRF)
The computation of the proposed random features requires no multiplication and a factor of $b$ less bits for storage compared to classical random features.
arXiv Detail & Related papers (2021-10-05T09:33:49Z) - Spectral properties of sample covariance matrices arising from random
matrices with independent non identically distributed columns [50.053491972003656]
It was previously shown that the functionals $texttr(AR(z))$, for $R(z) = (frac1nXXT- zI_p)-1$ and $Ain mathcal M_p$ deterministic, have a standard deviation of order $O(|A|_* / sqrt n)$.
Here, we show that $|mathbb E[R(z)] - tilde R(z)|_F
arXiv Detail & Related papers (2021-09-06T14:21:43Z) - Universal Regular Conditional Distributions via Probability
Measure-Valued Deep Neural Models [3.8073142980733]
We find that any model built using the proposed framework is dense in the space $C(mathcalX,mathcalP_1(mathcalY))$.
The proposed models are also shown to be capable of generically expressing the aleatoric uncertainty present in most randomized machine learning models.
arXiv Detail & Related papers (2021-05-17T11:34:09Z) - Linear Time Sinkhorn Divergences using Positive Features [51.50788603386766]
Solving optimal transport with an entropic regularization requires computing a $ntimes n$ kernel matrix that is repeatedly applied to a vector.
We propose to use instead ground costs of the form $c(x,y)=-logdotpvarphi(x)varphi(y)$ where $varphi$ is a map from the ground space onto the positive orthant $RRr_+$, with $rll n$.
arXiv Detail & Related papers (2020-06-12T10:21:40Z) - Neural Bayes: A Generic Parameterization Method for Unsupervised
Representation Learning [175.34232468746245]
We introduce a parameterization method called Neural Bayes.
It allows computing statistical quantities that are in general difficult to compute.
We show two independent use cases for this parameterization.
arXiv Detail & Related papers (2020-02-20T22:28:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.