Encrypted Federated Search Using Homomorphic Encryption
- URL: http://arxiv.org/abs/2505.02409v1
- Date: Mon, 05 May 2025 07:03:30 GMT
- Title: Encrypted Federated Search Using Homomorphic Encryption
- Authors: Om Rathod, Aastha Baid, Aswani Kumar Cherukuri,
- Abstract summary: This paper introduces a privacy-preserving federated search system that allows law enforcement agencies to conduct queries on encrypted criminal databases.<n>The key innovation here is the ability to execute encrypted queries across distributed databases, without the decryption of the data.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The sharing of information between agencies is effective in dealing with cross-jurisdictional criminal activities; however, such sharing is often restricted due to concerns about data privacy, ownership, and compliance. Towards this end, this work has introduced a privacy-preserving federated search system that allows law enforcement agencies to conduct queries on encrypted criminal databases by utilizing Homomorphic Encryption (HE). The key innovation here is the ability to execute encrypted queries across distributed databases, without the decryption of the data, thus preserving end-to-end confidentiality. In essence, this approach meets stringent privacy requirements in the interests of national security and regulatory compliance. The system incorporates the CKKS and BFV scheme embedded within TenSEAL, with each agency holding its key pair in a centralized key management table. In this federated search, encrypted queries are computed on the server side, and only authorized clients can decrypt the computed results. The matching of agencies is flexible for working in real-time while at the same time being secure and scalable while preserving control over data and the integrity of the process. Experimental results demonstrate the model. This paper also provide the implementation code and other details.
Related papers
- Privacy-Preserving Federated Embedding Learning for Localized Retrieval-Augmented Generation [60.81109086640437]
We propose a novel framework called Federated Retrieval-Augmented Generation (FedE4RAG)<n>FedE4RAG facilitates collaborative training of client-side RAG retrieval models.<n>We apply homomorphic encryption within federated learning to safeguard model parameters.
arXiv Detail & Related papers (2025-04-27T04:26:02Z) - Secure Semantic Communication With Homomorphic Encryption [52.5344514499035]
This paper explores the feasibility of applying homomorphic encryption to SemCom.<n>We propose a task-oriented SemCom scheme secured through homomorphic encryption.
arXiv Detail & Related papers (2025-01-17T13:26:14Z) - Balancing Confidentiality and Transparency for Blockchain-based Process-Aware Information Systems [46.404531555921906]
We propose an architecture for blockchain-based PAISs aimed at preserving both confidentiality and transparency.<n>Smart contracts enact, enforce and store public interactions, while attribute-based encryption techniques are adopted to specify access grants to confidential information.
arXiv Detail & Related papers (2024-12-07T20:18:36Z) - HOPE: Homomorphic Order-Preserving Encryption for Outsourced Databases -- A Stateless Approach [1.1701842638497677]
Homomorphic OPE (HOPE) is a new OPE scheme that eliminates client-side storage and avoids additional client-server interaction during query execution.
We provide a formal cryptographic analysis of HOPE, proving its security under the widely accepted IND-OCPA model.
arXiv Detail & Related papers (2024-11-26T00:38:46Z) - DataSeal: Ensuring the Verifiability of Private Computation on Encrypted Data [14.21750921409931]
We introduce DataSeal, which combines the low overhead of the algorithm-based fault tolerance (ABFT) technique with the confidentiality of Fully Homomorphic Encryption (FHE)
DataSeal achieves much lower overheads for providing computation verifiability for FHE than other techniques that include MAC, ZKP, and TEE.
arXiv Detail & Related papers (2024-10-19T21:19:39Z) - Practical Privacy-Preserving Identity Verification using Third-Party Cloud Services and FHE (Role of Data Encoding in Circuit Depth Management) [0.0]
Governments seek to outsource national digital identity verification systems to third-party cloud services.
This leads to increased concerns regarding the privacy of users' personal data.
We propose a privacy-preserving digital identity (ID) verification protocol where the third-party cloud services process the identity data encrypted.
arXiv Detail & Related papers (2024-08-15T08:12:07Z) - Enc2DB: A Hybrid and Adaptive Encrypted Query Processing Framework [47.11111145443189]
We introduce Enc2DB, a novel secure database system following a hybrid strategy on and openGauss.
We present a micro-benchmarking test and self-adaptive mode switch strategy that can choose the best execution path (cryptography or TEE) to answer a given query.
We also design and implement a ciphertext index compatible with native cost model and querys to accelerate query processing.
arXiv Detail & Related papers (2024-04-10T08:11:12Z) - Blockchain-enabled Data Governance for Privacy-Preserved Sharing of Confidential Data [1.6006586061577806]
We propose a blockchain-based data governance system that employs attribute-based encryption to prevent privacy leakage and credential misuse.
First, our ABE encryption system can handle multi-authority use cases while protecting identity privacy and hiding access policy.
Second, applying the Advanced Encryption Standard (AES) for data encryption makes the whole system efficient and responsive to real-world conditions.
arXiv Detail & Related papers (2023-09-08T05:01:59Z) - Is Vertical Logistic Regression Privacy-Preserving? A Comprehensive
Privacy Analysis and Beyond [57.10914865054868]
We consider vertical logistic regression (VLR) trained with mini-batch descent gradient.
We provide a comprehensive and rigorous privacy analysis of VLR in a class of open-source Federated Learning frameworks.
arXiv Detail & Related papers (2022-07-19T05:47:30Z) - Reinforcement Learning on Encrypted Data [58.39270571778521]
We present a preliminary, experimental study of how a DQN agent trained on encrypted states performs in environments with discrete and continuous state spaces.
Our results highlight that the agent is still capable of learning in small state spaces even in presence of non-deterministic encryption, but performance collapses in more complex environments.
arXiv Detail & Related papers (2021-09-16T21:59:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.