DataSeal: Ensuring the Verifiability of Private Computation on Encrypted Data
- URL: http://arxiv.org/abs/2410.15215v1
- Date: Sat, 19 Oct 2024 21:19:39 GMT
- Title: DataSeal: Ensuring the Verifiability of Private Computation on Encrypted Data
- Authors: Muhammad Husni Santriaji, Jiaqi Xue, Qian Lou, Yan Solihin,
- Abstract summary: We introduce DataSeal, which combines the low overhead of the algorithm-based fault tolerance (ABFT) technique with the confidentiality of Fully Homomorphic Encryption (FHE)
DataSeal achieves much lower overheads for providing computation verifiability for FHE than other techniques that include MAC, ZKP, and TEE.
- Score: 14.21750921409931
- License:
- Abstract: Fully Homomorphic Encryption (FHE) allows computations to be performed directly on encrypted data without needing to decrypt it first. This "encryption-in-use" feature is crucial for securely outsourcing computations in privacy-sensitive areas such as healthcare and finance. Nevertheless, in the context of FHE-based cloud computing, clients often worry about the integrity and accuracy of the outcomes. This concern arises from the potential for a malicious server or server-side vulnerabilities that could result in tampering with the data, computations, and results. Ensuring integrity and verifiability with low overhead remains an open problem, as prior attempts have not yet achieved this goal. To tackle this challenge and ensure the verification of FHE's private computations on encrypted data, we introduce DataSeal, which combines the low overhead of the algorithm-based fault tolerance (ABFT) technique with the confidentiality of FHE, offering high efficiency and verification capability. Through thorough testing in diverse contexts, we demonstrate that DataSeal achieves much lower overheads for providing computation verifiability for FHE than other techniques that include MAC, ZKP, and TEE. DataSeal's space and computation overheads decrease to nearly negligible as the problem size increases.
Related papers
- Secure Outsourced Decryption for FHE-based Privacy-preserving Cloud Computing [3.125865379632205]
Homomorphic encryption (HE) is one solution for safeguarding data privacy, enabling encrypted data to be processed securely in the cloud.
We propose an outsourced decryption protocol for the prevailing RLWE-based fully homomorphic encryption schemes.
Our experiments demonstrate that the proposed protocol achieves up to a $67%$ acceleration in the client's local decryption, accompanied by a $50%$ reduction in space usage.
arXiv Detail & Related papers (2024-06-28T14:51:36Z) - Enc2DB: A Hybrid and Adaptive Encrypted Query Processing Framework [47.11111145443189]
We introduce Enc2DB, a novel secure database system following a hybrid strategy on and openGauss.
We present a micro-benchmarking test and self-adaptive mode switch strategy that can choose the best execution path (cryptography or TEE) to answer a given query.
We also design and implement a ciphertext index compatible with native cost model and querys to accelerate query processing.
arXiv Detail & Related papers (2024-04-10T08:11:12Z) - Privacy Preserving Anomaly Detection on Homomorphic Encrypted Data from IoT Sensors [0.9831489366502302]
Homomorphic encryption schemes are promising solutions as they enable the processing and execution of operations on IoT data while still encrypted.
We propose a novel privacy-preserving anomaly detection solution designed for homomorphically encrypted data generated by IoT devices.
arXiv Detail & Related papers (2024-03-14T12:11:25Z) - Ciphertext-Only Attack on a Secure $k$-NN Computation on Cloud [0.0]
encryption can prevent unauthorized access, data breaches, and the resultant financial loss, reputation damage, and legal issues.
Sanyashi et al. proposed an encryption scheme to facilitate privacy-preserving $k$-NN computation on the cloud.
We give an efficient algorithm and empirically demonstrate that their encryption scheme is vulnerable to the ciphertext-only attack (COA)
arXiv Detail & Related papers (2024-03-14T03:53:01Z) - SOCI^+: An Enhanced Toolkit for Secure OutsourcedComputation on Integers [50.608828039206365]
We propose SOCI+ which significantly improves the performance of SOCI.
SOCI+ employs a novel (2, 2)-threshold Paillier cryptosystem with fast encryption and decryption as its cryptographic primitive.
Compared with SOCI, our experimental evaluation shows that SOCI+ is up to 5.4 times more efficient in computation and 40% less in communication overhead.
arXiv Detail & Related papers (2023-09-27T05:19:32Z) - Verifiable Privacy-Preserving Computing [3.543432625843538]
We analyze existing solutions that combine verifiability with privacy-preserving computations over distributed data.
We classify and compare 37 different schemes, regarding solution approach, security, efficiency, and practicality.
arXiv Detail & Related papers (2023-09-15T08:44:13Z) - Verifiable Encodings for Secure Homomorphic Analytics [10.402772462535884]
Homomorphic encryption is a promising solution for protecting privacy of cloud-delegated computations on sensitive data.
We propose two error detection encodings and build authenticators that enable practical client-verification of cloud-based homomorphic computations.
We implement our solution in VERITAS, a ready-to-use system for verification of outsourced computations executed over encrypted data.
arXiv Detail & Related papers (2022-07-28T13:22:21Z) - Decentralized Stochastic Optimization with Inherent Privacy Protection [103.62463469366557]
Decentralized optimization is the basic building block of modern collaborative machine learning, distributed estimation and control, and large-scale sensing.
Since involved data, privacy protection has become an increasingly pressing need in the implementation of decentralized optimization algorithms.
arXiv Detail & Related papers (2022-05-08T14:38:23Z) - Reinforcement Learning on Encrypted Data [58.39270571778521]
We present a preliminary, experimental study of how a DQN agent trained on encrypted states performs in environments with discrete and continuous state spaces.
Our results highlight that the agent is still capable of learning in small state spaces even in presence of non-deterministic encryption, but performance collapses in more complex environments.
arXiv Detail & Related papers (2021-09-16T21:59:37Z) - Faster Secure Data Mining via Distributed Homomorphic Encryption [108.77460689459247]
Homomorphic Encryption (HE) is receiving more and more attention recently for its capability to do computations over the encrypted field.
We propose a novel general distributed HE-based data mining framework towards one step of solving the scaling problem.
We verify the efficiency and effectiveness of our new framework by testing over various data mining algorithms and benchmark data-sets.
arXiv Detail & Related papers (2020-06-17T18:14:30Z) - CryptoSPN: Privacy-preserving Sum-Product Network Inference [84.88362774693914]
We present a framework for privacy-preserving inference of sum-product networks (SPNs)
CryptoSPN achieves highly efficient and accurate inference in the order of seconds for medium-sized SPNs.
arXiv Detail & Related papers (2020-02-03T14:49:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.