T2S: High-resolution Time Series Generation with Text-to-Series Diffusion Models
- URL: http://arxiv.org/abs/2505.02417v2
- Date: Thu, 08 May 2025 08:30:12 GMT
- Title: T2S: High-resolution Time Series Generation with Text-to-Series Diffusion Models
- Authors: Yunfeng Ge, Jiawei Li, Yiji Zhao, Haomin Wen, Zhao Li, Meikang Qiu, Hongyan Li, Ming Jin, Shirui Pan,
- Abstract summary: We introduce Text-to-Series (T2S), a diffusion-based framework that bridges the gap between natural language and time series.<n>T2S employs a length-adaptive variational autoencoder to encode time series of varying lengths into consistent latent embeddings.<n>We train T2S in an interleaved paradigm across multiple lengths, allowing it to generate sequences of any desired length.
- Score: 51.08566687549047
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Text-to-Time Series generation holds significant potential to address challenges such as data sparsity, imbalance, and limited availability of multimodal time series datasets across domains. While diffusion models have achieved remarkable success in Text-to-X (e.g., vision and audio data) generation, their use in time series generation remains in its nascent stages. Existing approaches face two critical limitations: (1) the lack of systematic exploration of general-proposed time series captions, which are often domain-specific and struggle with generalization; and (2) the inability to generate time series of arbitrary lengths, limiting their applicability to real-world scenarios. In this work, we first categorize time series captions into three levels: point-level, fragment-level, and instance-level. Additionally, we introduce a new fragment-level dataset containing over 600,000 high-resolution time series-text pairs. Second, we propose Text-to-Series (T2S), a diffusion-based framework that bridges the gap between natural language and time series in a domain-agnostic manner. T2S employs a length-adaptive variational autoencoder to encode time series of varying lengths into consistent latent embeddings. On top of that, T2S effectively aligns textual representations with latent embeddings by utilizing Flow Matching and employing Diffusion Transformer as the denoiser. We train T2S in an interleaved paradigm across multiple lengths, allowing it to generate sequences of any desired length. Extensive evaluations demonstrate that T2S achieves state-of-the-art performance across 13 datasets spanning 12 domains.
Related papers
- Language in the Flow of Time: Time-Series-Paired Texts Weaved into a Unified Temporal Narrative [65.84249211767921]
Texts as Time Series (TaTS) considers the time-series-paired texts to be auxiliary variables of the time series.<n>TaTS can be plugged into any existing numerical-only time series models and enable them to handle time series data with paired texts effectively.
arXiv Detail & Related papers (2025-02-13T03:43:27Z) - Time Series Language Model for Descriptive Caption Generation [11.796431549951055]
We introduce TSLM, a novel time series language model designed specifically for time series captioning.<n>TSLM operates as an encoder-decoder model, leveraging both text prompts and time series data representations.<n>We show that TSLM outperforms existing state-of-the-art approaches from multiple data modalities by a significant margin.
arXiv Detail & Related papers (2025-01-03T14:34:30Z) - TS-HTFA: Advancing Time Series Forecasting via Hierarchical Text-Free Alignment with Large Language Models [14.411646409316624]
We introduce textbfHierarchical textbfText-textbfFree textbfAlignment (textbfTS-HTFA), a novel method for time-series forecasting.<n>We replace paired text data with adaptive virtual text based on QR decomposition word embeddings and learnable prompt.<n>Experiments on multiple time-series benchmarks demonstrate that HTFA achieves state-of-the-art performance.
arXiv Detail & Related papers (2024-09-23T12:57:24Z) - Leveraging 2D Information for Long-term Time Series Forecasting with Vanilla Transformers [55.475142494272724]
Time series prediction is crucial for understanding and forecasting complex dynamics in various domains.
We introduce GridTST, a model that combines the benefits of two approaches using innovative multi-directional attentions.
The model consistently delivers state-of-the-art performance across various real-world datasets.
arXiv Detail & Related papers (2024-05-22T16:41:21Z) - Large Language Models Are Zero-Shot Time Series Forecasters [48.73953666153385]
By encoding time series as a string of numerical digits, we can frame time series forecasting as next-token prediction in text.
We find that large language models (LLMs) such as GPT-3 and LLaMA-2 can surprisingly zero-shot extrapolate time series at a level comparable to or exceeding the performance of purpose-built time series models trained on the downstream tasks.
arXiv Detail & Related papers (2023-10-11T19:01:28Z) - Learning Gaussian Mixture Representations for Tensor Time Series
Forecasting [8.31607451942671]
We develop a novel TTS forecasting framework, which seeks to individually model each heterogeneity component implied in the time, the location, and the source variables.
Experiment results on two real-world TTS datasets verify the superiority of our approach compared with the state-of-the-art baselines.
arXiv Detail & Related papers (2023-06-01T06:50:47Z) - TimeMAE: Self-Supervised Representations of Time Series with Decoupled
Masked Autoencoders [55.00904795497786]
We propose TimeMAE, a novel self-supervised paradigm for learning transferrable time series representations based on transformer networks.
The TimeMAE learns enriched contextual representations of time series with a bidirectional encoding scheme.
To solve the discrepancy issue incurred by newly injected masked embeddings, we design a decoupled autoencoder architecture.
arXiv Detail & Related papers (2023-03-01T08:33:16Z) - FormerTime: Hierarchical Multi-Scale Representations for Multivariate
Time Series Classification [53.55504611255664]
FormerTime is a hierarchical representation model for improving the classification capacity for the multivariate time series classification task.
It exhibits three aspects of merits: (1) learning hierarchical multi-scale representations from time series data, (2) inheriting the strength of both transformers and convolutional networks, and (3) tacking the efficiency challenges incurred by the self-attention mechanism.
arXiv Detail & Related papers (2023-02-20T07:46:14Z) - Expressing Multivariate Time Series as Graphs with Time Series Attention
Transformer [14.172091921813065]
We propose the Time Series Attention Transformer (TSAT) for multivariate time series representation learning.
Using TSAT, we represent both temporal information and inter-dependencies of time series in terms of edge-enhanced dynamic graphs.
We show that TSAT clearly outerperforms six state-of-the-art baseline methods in various forecasting horizons.
arXiv Detail & Related papers (2022-08-19T12:25:56Z) - HyperTime: Implicit Neural Representation for Time Series [131.57172578210256]
Implicit neural representations (INRs) have recently emerged as a powerful tool that provides an accurate and resolution-independent encoding of data.
In this paper, we analyze the representation of time series using INRs, comparing different activation functions in terms of reconstruction accuracy and training convergence speed.
We propose a hypernetwork architecture that leverages INRs to learn a compressed latent representation of an entire time series dataset.
arXiv Detail & Related papers (2022-08-11T14:05:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.