SEFE: Superficial and Essential Forgetting Eliminator for Multimodal Continual Instruction Tuning
- URL: http://arxiv.org/abs/2505.02486v1
- Date: Mon, 05 May 2025 09:09:41 GMT
- Title: SEFE: Superficial and Essential Forgetting Eliminator for Multimodal Continual Instruction Tuning
- Authors: Jinpeng Chen, Runmin Cong, Yuzhi Zhao, Hongzheng Yang, Guangneng Hu, Horace Ho Shing Ip, Sam Kwong,
- Abstract summary: Multimodal Continual Instruction Tuning (MCIT) aims to enable Multimodal Large Language Models (MLLMs) to incrementally learn new tasks without catastrophic forgetting.<n>Superficial forgetting refers to cases where the model's knowledge may not be genuinely lost, but its responses to previous tasks deviate from expected formats.<n>By contrast, essential forgetting refers to situations where the model provides correctly formatted but factually inaccurate answers, indicating a true loss of knowledge.
- Score: 62.18315467642528
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multimodal Continual Instruction Tuning (MCIT) aims to enable Multimodal Large Language Models (MLLMs) to incrementally learn new tasks without catastrophic forgetting. In this paper, we explore forgetting in this context, categorizing it into superficial forgetting and essential forgetting. Superficial forgetting refers to cases where the model's knowledge may not be genuinely lost, but its responses to previous tasks deviate from expected formats due to the influence of subsequent tasks' answer styles, making the results unusable. By contrast, essential forgetting refers to situations where the model provides correctly formatted but factually inaccurate answers, indicating a true loss of knowledge. Assessing essential forgetting necessitates addressing superficial forgetting first, as severe superficial forgetting can obscure the model's knowledge state. Hence, we first introduce the Answer Style Diversification (ASD) paradigm, which defines a standardized process for transforming data styles across different tasks, unifying their training sets into similarly diversified styles to prevent superficial forgetting caused by style shifts. Building on this, we propose RegLoRA to mitigate essential forgetting. RegLoRA stabilizes key parameters where prior knowledge is primarily stored by applying regularization, enabling the model to retain existing competencies. Experimental results demonstrate that our overall method, SEFE, achieves state-of-the-art performance.
Related papers
- Orthogonal Projection Subspace to Aggregate Online Prior-knowledge for Continual Test-time Adaptation [67.80294336559574]
Continual Test Time Adaptation (CTTA) is a task that requires a source pre-trained model to continually adapt to new scenarios.<n>We propose a novel pipeline, Orthogonal Projection Subspace to aggregate online Prior-knowledge, dubbed OoPk.
arXiv Detail & Related papers (2025-06-23T18:17:39Z) - LLM Unlearning Should Be Form-Independent [14.222205207889543]
Large Language Model (LLM) unlearning aims to erase or suppress undesirable knowledge within the model.<n>We identify a pervasive issue underlying many downstream failures: the effectiveness of existing unlearning methods heavily depends on the form of training samples.<n>We introduce Rank-one Concept Redirection (ROCR), a novel training-free method, as a promising solution path.
arXiv Detail & Related papers (2025-06-09T14:21:25Z) - UniErase: Unlearning Token as a Universal Erasure Primitive for Language Models [54.75551043657238]
We introduce UniErase, a novel unlearning paradigm that employs learnable parametric suffix (unlearning token) to steer language models toward targeted forgetting behaviors.<n>UniErase achieves state-of-the-art (SOTA) performance across batch, sequential, and precise unlearning under fictitious and real-world knowledge settings.
arXiv Detail & Related papers (2025-05-21T15:53:28Z) - The Inherent Limits of Pretrained LLMs: The Unexpected Convergence of Instruction Tuning and In-Context Learning Capabilities [51.594836904623534]
We investigate whether instruction-tuned models possess fundamentally different capabilities from base models that are prompted using in-context examples.<n>We show that the performance of instruction-tuned models is significantly correlated with the in-context performance of their base counterparts.<n>Specifically, we extend this understanding to instruction-tuned models, suggesting that their pretraining data similarly sets a limiting boundary on the tasks they can solve.
arXiv Detail & Related papers (2025-01-15T10:57:55Z) - Unified Parameter-Efficient Unlearning for LLMs [25.195126838721492]
Large Language Models (LLMs) have revolutionized natural language processing, enabling advanced understanding and reasoning capabilities across a variety of tasks.<n>This raises significant privacy and security concerns, as models may inadvertently retain and disseminate sensitive or undesirable information.<n>We introduce a novel instance-wise unlearning framework, LLMEraser, which systematically categorizes unlearning tasks and applies precise adjustments using influence functions.
arXiv Detail & Related papers (2024-11-30T07:21:02Z) - Information Guided Regularization for Fine-tuning Language Models [11.831883526217942]
We argue that a more surgical approach to regularization needs to exist for smoother transfer learning.
We devise a novel approach to dropout for improved model regularization and better downstream generalization.
arXiv Detail & Related papers (2024-06-20T05:18:37Z) - RKLD: Reverse KL-Divergence-based Knowledge Distillation for Unlearning Personal Information in Large Language Models [23.91608718129775]
We propose RKLD, a novel textbfReverse textbfKL-Divergence-based Knowledge textbfDistillation unlearning algorithm for large language models (LLMs)
We achieve significant forget quality and effectively maintain the model utility in our experiments.
arXiv Detail & Related papers (2024-06-04T05:51:43Z) - Scalable Language Model with Generalized Continual Learning [58.700439919096155]
The Joint Adaptive Re-ization (JARe) is integrated with Dynamic Task-related Knowledge Retrieval (DTKR) to enable adaptive adjustment of language models based on specific downstream tasks.
Our method demonstrates state-of-the-art performance on diverse backbones and benchmarks, achieving effective continual learning in both full-set and few-shot scenarios with minimal forgetting.
arXiv Detail & Related papers (2024-04-11T04:22:15Z) - Towards Robust Continual Learning with Bayesian Adaptive Moment Regularization [51.34904967046097]
Continual learning seeks to overcome the challenge of catastrophic forgetting, where a model forgets previously learnt information.
We introduce a novel prior-based method that better constrains parameter growth, reducing catastrophic forgetting.
Results show that BAdam achieves state-of-the-art performance for prior-based methods on challenging single-headed class-incremental experiments.
arXiv Detail & Related papers (2023-09-15T17:10:51Z) - Large Language Models with Controllable Working Memory [64.71038763708161]
Large language models (LLMs) have led to a series of breakthroughs in natural language processing (NLP)
What further sets these models apart is the massive amounts of world knowledge they internalize during pretraining.
How the model's world knowledge interacts with the factual information presented in the context remains under explored.
arXiv Detail & Related papers (2022-11-09T18:58:29Z) - Goal-Aware Prediction: Learning to Model What Matters [105.43098326577434]
One of the fundamental challenges in using a learned forward dynamics model is the mismatch between the objective of the learned model and that of the downstream planner or policy.
We propose to direct prediction towards task relevant information, enabling the model to be aware of the current task and encouraging it to only model relevant quantities of the state space.
We find that our method more effectively models the relevant parts of the scene conditioned on the goal, and as a result outperforms standard task-agnostic dynamics models and model-free reinforcement learning.
arXiv Detail & Related papers (2020-07-14T16:42:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.