Orthogonal Projection Subspace to Aggregate Online Prior-knowledge for Continual Test-time Adaptation
- URL: http://arxiv.org/abs/2506.19022v1
- Date: Mon, 23 Jun 2025 18:17:39 GMT
- Title: Orthogonal Projection Subspace to Aggregate Online Prior-knowledge for Continual Test-time Adaptation
- Authors: Jinlong Li, Dong Zhao, Qi Zang, Zequn Jie, Lin Ma, Nicu Sebe,
- Abstract summary: Continual Test Time Adaptation (CTTA) is a task that requires a source pre-trained model to continually adapt to new scenarios.<n>We propose a novel pipeline, Orthogonal Projection Subspace to aggregate online Prior-knowledge, dubbed OoPk.
- Score: 67.80294336559574
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Continual Test Time Adaptation (CTTA) is a task that requires a source pre-trained model to continually adapt to new scenarios with changing target distributions. Existing CTTA methods primarily focus on mitigating the challenges of catastrophic forgetting and error accumulation. Though there have been emerging methods based on forgetting adaptation with parameter-efficient fine-tuning, they still struggle to balance competitive performance and efficient model adaptation, particularly in complex tasks like semantic segmentation. In this paper, to tackle the above issues, we propose a novel pipeline, Orthogonal Projection Subspace to aggregate online Prior-knowledge, dubbed OoPk. Specifically, we first project a tuning subspace orthogonally which allows the model to adapt to new domains while preserving the knowledge integrity of the pre-trained source model to alleviate catastrophic forgetting. Then, we elaborate an online prior-knowledge aggregation strategy that employs an aggressive yet efficient image masking strategy to mimic potential target dynamism, enhancing the student model's domain adaptability. This further gradually ameliorates the teacher model's knowledge, ensuring high-quality pseudo labels and reducing error accumulation. We demonstrate our method with extensive experiments that surpass previous CTTA methods and achieve competitive performances across various continual TTA benchmarks in semantic segmentation tasks.
Related papers
- MINGLE: Mixtures of Null-Space Gated Low-Rank Experts for Test-Time Continual Model Merging [19.916880222546155]
Continual model merging integrates independently fine-tuned models sequentially without access to original training data.<n> MINGLE is a novel framework for test-time continual model merging using a small set of unlabeled test samples.<n> MINGLE consistently surpasses previous state-of-the-art methods by 7-9% on average across diverse task orders.
arXiv Detail & Related papers (2025-05-17T07:24:22Z) - Sculpting Subspaces: Constrained Full Fine-Tuning in LLMs for Continual Learning [19.27175827358111]
Continual learning in large language models (LLMs) is prone to catastrophic forgetting, where adapting to new tasks significantly degrades performance on previously learned ones.<n>We propose a novel continual full fine-tuning approach leveraging adaptive singular value decomposition (SVD)<n>We evaluate our approach extensively on standard continual learning benchmarks using both encoder-decoder (T5-Large) and decoder-only (LLaMA-2 7B) models.
arXiv Detail & Related papers (2025-04-09T17:59:42Z) - Enhancing Robustness of Vision-Language Models through Orthogonality Learning and Self-Regularization [77.62516752323207]
We introduce an orthogonal fine-tuning method for efficiently fine-tuning pretrained weights and enabling enhanced robustness and generalization.
A self-regularization strategy is further exploited to maintain the stability in terms of zero-shot generalization of VLMs, dubbed OrthSR.
For the first time, we revisit the CLIP and CoOp with our method to effectively improve the model on few-shot image classficiation scenario.
arXiv Detail & Related papers (2024-07-11T10:35:53Z) - Towards Continual Learning Desiderata via HSIC-Bottleneck
Orthogonalization and Equiangular Embedding [55.107555305760954]
We propose a conceptually simple yet effective method that attributes forgetting to layer-wise parameter overwriting and the resulting decision boundary distortion.
Our method achieves competitive accuracy performance, even with absolute superiority of zero exemplar buffer and 1.02x the base model.
arXiv Detail & Related papers (2024-01-17T09:01:29Z) - Test-Time Training for Semantic Segmentation with Output Contrastive
Loss [12.535720010867538]
Deep learning-based segmentation models have achieved impressive performance on public benchmarks, but generalizing well to unseen environments remains a major challenge.
This paper introduces Contrastive Loss (OCL), known for its capability to learn robust and generalized representations, to stabilize the adaptation process.
Our method excels even when applied to models initially pre-trained using domain adaptation methods on test domain data, showcasing its resilience and adaptability.
arXiv Detail & Related papers (2023-11-14T03:13:47Z) - Towards Robust Continual Learning with Bayesian Adaptive Moment Regularization [51.34904967046097]
Continual learning seeks to overcome the challenge of catastrophic forgetting, where a model forgets previously learnt information.
We introduce a novel prior-based method that better constrains parameter growth, reducing catastrophic forgetting.
Results show that BAdam achieves state-of-the-art performance for prior-based methods on challenging single-headed class-incremental experiments.
arXiv Detail & Related papers (2023-09-15T17:10:51Z) - ViDA: Homeostatic Visual Domain Adapter for Continual Test Time Adaptation [48.039156140237615]
A Continual Test-Time Adaptation task is proposed to adapt the pre-trained model to continually changing target domains.
We design a Visual Domain Adapter (ViDA) for CTTA, explicitly handling both domain-specific and domain-shared knowledge.
Our proposed method achieves state-of-the-art performance in both classification and segmentation CTTA tasks.
arXiv Detail & Related papers (2023-06-07T11:18:53Z) - CAFA: Class-Aware Feature Alignment for Test-Time Adaptation [50.26963784271912]
Test-time adaptation (TTA) aims to address this challenge by adapting a model to unlabeled data at test time.
We propose a simple yet effective feature alignment loss, termed as Class-Aware Feature Alignment (CAFA), which simultaneously encourages a model to learn target representations in a class-discriminative manner.
arXiv Detail & Related papers (2022-06-01T03:02:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.