論文の概要: Beyond the model: Key differentiators in large language models and multi-agent services
- arxiv url: http://arxiv.org/abs/2505.02489v1
- Date: Mon, 05 May 2025 09:15:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-06 18:49:35.622955
- Title: Beyond the model: Key differentiators in large language models and multi-agent services
- Title(参考訳): モデルを超えて: 大規模言語モデルとマルチエージェントサービスにおける重要な差別化要因
- Authors: Muskaan Goyal, Pranav Bhasin,
- Abstract要約: DeepSeek、Manus AI、Llama 4といった基礎モデルのローンチによって、大規模言語モデル(LLM)がもはや生成AIの唯一の決定要因ではないことが明らかになった。
このレビュー記事は、現代のAIサービスが効率的で利益を上げられるように、これらの重要な差別化要因を掘り下げている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the launch of foundation models like DeepSeek, Manus AI, and Llama 4, it has become evident that large language models (LLMs) are no longer the sole defining factor in generative AI. As many now operate at comparable levels of capability, the real race is not about having the biggest model but optimizing the surrounding ecosystem, including data quality and management, computational efficiency, latency, and evaluation frameworks. This review article delves into these critical differentiators that ensure modern AI services are efficient and profitable.
- Abstract(参考訳): DeepSeek、Manus AI、Llama 4といった基礎モデルのローンチによって、大規模言語モデル(LLM)がもはや生成AIの唯一の決定要因ではないことが明らかになった。
多くの人が同等のレベルの能力で運用しているように、真の競合は最大のモデルを持つことではなく、データ品質と管理、計算効率、レイテンシ、評価フレームワークなど、周辺エコシステムを最適化することです。
このレビュー記事は、現代のAIサービスが効率的で利益を上げられるように、これらの重要な差別化要因を掘り下げている。
関連論文リスト
- Multiagent Finetuning: Self Improvement with Diverse Reasoning Chains [114.76612918465948]
大規模言語モデル(LLM)は近年顕著なパフォーマンスを達成しているが、基礎となるトレーニングデータによって根本的に制限されている。
本稿では,言語モデルのマルチエージェント社会にファインタニングを適用した自己改善への補完的アプローチを提案する。
論文 参考訳(メタデータ) (2025-01-10T04:35:46Z) - xLAM: A Family of Large Action Models to Empower AI Agent Systems [111.5719694445345]
AIエージェントタスク用に設計された大規模なアクションモデルであるxLAMをリリースする。
xLAMは、複数のエージェント能力ベンチマークで例外的なパフォーマンスを提供する。
論文 参考訳(メタデータ) (2024-09-05T03:22:22Z) - Data-Juicer Sandbox: A Feedback-Driven Suite for Multimodal Data-Model Co-development [67.55944651679864]
統合データモデル共同開発に適した新しいサンドボックススイートを提案する。
このサンドボックスは、フィードバック駆動の実験プラットフォームを提供し、コスト効率とデータとモデルの両方のガイド付き洗練を可能にする。
論文 参考訳(メタデータ) (2024-07-16T14:40:07Z) - Improving the Capabilities of Large Language Model Based Marketing Analytics Copilots With Semantic Search And Fine-Tuning [0.9787137564521711]
本稿では, 意味探索, プロンプトエンジニアリング, 微調整を組み合わせることで, LLMのタスクを正確に実行する能力を大幅に向上させることができることを示す。
GPT-4のようなプロプライエタリなモデルと、Llama-2-70bのようなオープンソースのモデル、および様々な埋め込み方法を比較します。
論文 参考訳(メタデータ) (2024-04-16T03:39:16Z) - Large Language Model Evaluation Via Multi AI Agents: Preliminary results [3.8066447473175304]
本稿では,多言語モデル(LLM)の性能評価と比較を目的とした,新しいマルチエージェントAIモデルを提案する。
我々のモデルは8つの異なるAIエージェントで構成されており、それぞれが異なる先進言語モデルから共通の記述に基づいてコードを取得する責任がある。
我々はHumanEvalベンチマークを検証エージェントに統合し、生成されたコードのパフォーマンスを評価し、それぞれの能力と効率について洞察を提供する。
論文 参考訳(メタデータ) (2024-04-01T10:06:04Z) - MindLLM: Pre-training Lightweight Large Language Model from Scratch,
Evaluations and Domain Applications [46.337078949637345]
我々は、スクラッチから訓練されたバイリンガル軽量な大規模言語モデルの新しいシリーズであるMindLLMを紹介する。
大規模なモデル開発で得られた経験の詳細な説明が与えられ、プロセスのすべてのステップをカバーする。
MindLLMは、いくつかの公開ベンチマークにおいて、他のオープンソースの大規模モデルのパフォーマンスと一貫して一致または上回っている。
論文 参考訳(メタデータ) (2023-10-24T12:22:34Z) - Cheaply Evaluating Inference Efficiency Metrics for Autoregressive
Transformer APIs [66.30706841821123]
大規模言語モデル(LLM)は、自然言語処理において多くの最先端システムに電力を供給する。
LLMは、推論時でさえ非常に計算コストが高い。
モデル間での推論効率を比較するための新しい指標を提案する。
論文 参考訳(メタデータ) (2023-05-03T21:51:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。