Machine-Learning-Powered Neural Interfaces for Smart Prosthetics and Diagnostics
- URL: http://arxiv.org/abs/2505.02516v1
- Date: Mon, 05 May 2025 09:49:13 GMT
- Title: Machine-Learning-Powered Neural Interfaces for Smart Prosthetics and Diagnostics
- Authors: MohammadAli Shaeri, Jinhan Liu, Mahsa Shoaran,
- Abstract summary: We review recent advancements in AI-driven decoding algorithms and energy-efficient System-on-Chip platforms for next-generation miniaturized neural devices.<n>These innovations highlight the potential for developing intelligent neural interfaces, addressing critical challenges in scalability, reliability, interpretability, and user adaptability.
- Score: 3.975510977962636
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Advanced neural interfaces are transforming applications ranging from neuroscience research to diagnostic tools (for mental state recognition, tremor and seizure detection) as well as prosthetic devices (for motor and communication recovery). By integrating complex functions into miniaturized neural devices, these systems unlock significant opportunities for personalized assistive technologies and adaptive therapeutic interventions. Leveraging high-density neural recordings, on-site signal processing, and machine learning (ML), these interfaces extract critical features, identify disease neuro-markers, and enable accurate, low-latency neural decoding. This integration facilitates real-time interpretation of neural signals, adaptive modulation of brain activity, and efficient control of assistive devices. Moreover, the synergy between neural interfaces and ML has paved the way for self-sufficient, ubiquitous platforms capable of operating in diverse environments with minimal hardware costs and external dependencies. In this work, we review recent advancements in AI-driven decoding algorithms and energy-efficient System-on-Chip (SoC) platforms for next-generation miniaturized neural devices. These innovations highlight the potential for developing intelligent neural interfaces, addressing critical challenges in scalability, reliability, interpretability, and user adaptability.
Related papers
- Neural Brain: A Neuroscience-inspired Framework for Embodied Agents [58.58177409853298]
Current AI systems, such as large language models, remain disembodied, unable to physically engage with the world.<n>At the core of this challenge lies the concept of Neural Brain, a central intelligence system designed to drive embodied agents with human-like adaptability.<n>This paper introduces a unified framework for the Neural Brain of embodied agents, addressing two fundamental challenges.
arXiv Detail & Related papers (2025-05-12T15:05:34Z) - Contrastive Learning in Memristor-based Neuromorphic Systems [55.11642177631929]
Spiking neural networks have become an important family of neuron-based models that sidestep many of the key limitations facing modern-day backpropagation-trained deep networks.
In this work, we design and investigate a proof-of-concept instantiation of contrastive-signal-dependent plasticity (CSDP), a neuromorphic form of forward-forward-based, backpropagation-free learning.
arXiv Detail & Related papers (2024-09-17T04:48:45Z) - Enhancing learning in spiking neural networks through neuronal heterogeneity and neuromodulatory signaling [52.06722364186432]
We propose a biologically-informed framework for enhancing artificial neural networks (ANNs)
Our proposed dual-framework approach highlights the potential of spiking neural networks (SNNs) for emulating diverse spiking behaviors.
We outline how the proposed approach integrates brain-inspired compartmental models and task-driven SNNs, bioinspiration and complexity.
arXiv Detail & Related papers (2024-07-05T14:11:28Z) - Intelligent and Miniaturized Neural Interfaces: An Emerging Era in Neurotechnology [3.975510977962636]
We review the latest advancements in the development of three categories of intelligent neural prostheses featuring embedded signal processing on the implantable or wearable device.
These include 1) Neural interfaces for closed-loop symptom tracking and responsive stimulation; 2) Neural interfaces for emerging network-related conditions, such as psychiatric disorders.
arXiv Detail & Related papers (2024-05-13T21:37:50Z) - A Survey on Brain-Inspired Deep Learning via Predictive Coding [85.93245078403875]
Predictive coding (PC) has shown promising performance in machine intelligence tasks.<n>PC can model information processing in different brain areas, can be used in cognitive control and robotics.
arXiv Detail & Related papers (2023-08-15T16:37:16Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
This work addresses the challenge of designing neurobiologically-motivated schemes for adjusting the synapses of spiking networks.
Our experimental simulations demonstrate a consistent advantage over other biologically-plausible approaches when training recurrent spiking networks.
arXiv Detail & Related papers (2023-03-30T02:40:28Z) - Robotic Navigation Autonomy for Subretinal Injection via Intelligent
Real-Time Virtual iOCT Volume Slicing [88.99939660183881]
We propose a framework for autonomous robotic navigation for subretinal injection.
Our method consists of an instrument pose estimation method, an online registration between the robotic and the i OCT system, and trajectory planning tailored for navigation to an injection target.
Our experiments on ex-vivo porcine eyes demonstrate the precision and repeatability of the method.
arXiv Detail & Related papers (2023-01-17T21:41:21Z) - In the realm of hybrid Brain: Human Brain and AI [0.0]
Current brain-computer interface (BCI) technology is mainly on therapeutic outcomes.
Recently, artificial intelligence (AI) and machine learning (ML) technologies have been used to decode brain signals.
We envision the development of closed loop, intelligent, low-power, and miniaturized neural interfaces.
arXiv Detail & Related papers (2022-10-04T08:35:34Z) - Neuro-BERT: Rethinking Masked Autoencoding for Self-supervised Neurological Pretraining [24.641328814546842]
We present Neuro-BERT, a self-supervised pre-training framework of neurological signals based on masked autoencoding in the Fourier domain.
We propose a novel pre-training task dubbed Fourier Inversion Prediction (FIP), which randomly masks out a portion of the input signal and then predicts the missing information.
By evaluating our method on several benchmark datasets, we show that Neuro-BERT improves downstream neurological-related tasks by a large margin.
arXiv Detail & Related papers (2022-04-20T16:48:18Z) - POPPINS : A Population-Based Digital Spiking Neuromorphic Processor with
Integer Quadratic Integrate-and-Fire Neurons [50.591267188664666]
We propose a population-based digital spiking neuromorphic processor in 180nm process technology with two hierarchy populations.
The proposed approach enables the developments of biomimetic neuromorphic system and various low-power, and low-latency inference processing applications.
arXiv Detail & Related papers (2022-01-19T09:26:34Z) - A Portable, Self-Contained Neuroprosthetic Hand with Deep Learning-Based
Finger Control [18.09497225404653]
We present the implementation of a neuroprosthetic hand with embedded deep learning-based control.
The neural decoder is designed based on the recurrent neural network (RNN) architecture and deployed on the NVIDIA Jetson Nano.
This enables the implementation of the neuroprosthetic hand as a portable and self-contained unit with real-time control of individual finger movements.
arXiv Detail & Related papers (2021-03-24T19:11:58Z) - Closed-Loop Neural Interfaces with Embedded Machine Learning [12.977151652608047]
We review the recent developments in embedding machine learning in neural interfaces.
We present our optimized tree-based model for low-power and memory-efficient classification of neural signal in brain implants.
Using energy-aware learning and model compression, we show that the proposed oblique trees can outperform conventional machine learning models in applications such as seizure or tremor detection and motor decoding.
arXiv Detail & Related papers (2020-10-15T14:34:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.