Neuro-BERT: Rethinking Masked Autoencoding for Self-supervised Neurological Pretraining
- URL: http://arxiv.org/abs/2204.12440v2
- Date: Wed, 3 Jul 2024 22:27:37 GMT
- Title: Neuro-BERT: Rethinking Masked Autoencoding for Self-supervised Neurological Pretraining
- Authors: Di Wu, Siyuan Li, Jie Yang, Mohamad Sawan,
- Abstract summary: We present Neuro-BERT, a self-supervised pre-training framework of neurological signals based on masked autoencoding in the Fourier domain.
We propose a novel pre-training task dubbed Fourier Inversion Prediction (FIP), which randomly masks out a portion of the input signal and then predicts the missing information.
By evaluating our method on several benchmark datasets, we show that Neuro-BERT improves downstream neurological-related tasks by a large margin.
- Score: 24.641328814546842
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning associated with neurological signals is poised to drive major advancements in diverse fields such as medical diagnostics, neurorehabilitation, and brain-computer interfaces. The challenge in harnessing the full potential of these signals lies in the dependency on extensive, high-quality annotated data, which is often scarce and expensive to acquire, requiring specialized infrastructure and domain expertise. To address the appetite for data in deep learning, we present Neuro-BERT, a self-supervised pre-training framework of neurological signals based on masked autoencoding in the Fourier domain. The intuition behind our approach is simple: frequency and phase distribution of neurological signals can reveal intricate neurological activities. We propose a novel pre-training task dubbed Fourier Inversion Prediction (FIP), which randomly masks out a portion of the input signal and then predicts the missing information using the Fourier inversion theorem. Pre-trained models can be potentially used for various downstream tasks such as sleep stage classification and gesture recognition. Unlike contrastive-based methods, which strongly rely on carefully hand-crafted augmentations and siamese structure, our approach works reasonably well with a simple transformer encoder with no augmentation requirements. By evaluating our method on several benchmark datasets, we show that Neuro-BERT improves downstream neurological-related tasks by a large margin.
Related papers
- Machine Learning on Dynamic Functional Connectivity: Promise, Pitfalls, and Interpretations [7.013079422694949]
We seek to establish a well-founded empirical guideline for designing deep models for functional neuroimages.
We put the spotlight on (1) What is the current state-of-the-arts (SOTA) performance in cognitive task recognition and disease diagnosis using fMRI?
We have conducted a comprehensive evaluation and statistical analysis, in various settings, to answer the above outstanding questions.
arXiv Detail & Related papers (2024-09-17T17:24:17Z) - Contrastive Learning in Memristor-based Neuromorphic Systems [55.11642177631929]
Spiking neural networks have become an important family of neuron-based models that sidestep many of the key limitations facing modern-day backpropagation-trained deep networks.
In this work, we design and investigate a proof-of-concept instantiation of contrastive-signal-dependent plasticity (CSDP), a neuromorphic form of forward-forward-based, backpropagation-free learning.
arXiv Detail & Related papers (2024-09-17T04:48:45Z) - Understanding Auditory Evoked Brain Signal via Physics-informed Embedding Network with Multi-Task Transformer [3.261870217889503]
We propose an innovative multi-task learning model, Physics-informed Embedding Network with Multi-Task Transformer (PEMT-Net)
PEMT-Net enhances decoding performance through physics-informed embedding and deep learning techniques.
Experiments on a specific dataset demonstrate PEMT-Net's significant performance in multi-task auditory signal decoding.
arXiv Detail & Related papers (2024-06-04T06:53:32Z) - Deep Learning for real-time neural decoding of grasp [0.0]
We present a Deep Learning-based approach to the decoding of neural signals for grasp type classification.
The main goal of the presented approach is to improve over state-of-the-art decoding accuracy without relying on any prior neuroscience knowledge.
arXiv Detail & Related papers (2023-11-02T08:26:29Z) - Neuromorphic Auditory Perception by Neural Spiketrum [27.871072042280712]
We introduce a neural spike coding model called spiketrumtemporal, to transform the time-varying analog signals into efficient spike patterns.
The model provides a sparse and efficient coding scheme with precisely controllable spike rate that facilitates training of spiking neural networks in various auditory perception tasks.
arXiv Detail & Related papers (2023-09-11T13:06:19Z) - The Predictive Forward-Forward Algorithm [79.07468367923619]
We propose the predictive forward-forward (PFF) algorithm for conducting credit assignment in neural systems.
We design a novel, dynamic recurrent neural system that learns a directed generative circuit jointly and simultaneously with a representation circuit.
PFF efficiently learns to propagate learning signals and updates synapses with forward passes only.
arXiv Detail & Related papers (2023-01-04T05:34:48Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - POPPINS : A Population-Based Digital Spiking Neuromorphic Processor with
Integer Quadratic Integrate-and-Fire Neurons [50.591267188664666]
We propose a population-based digital spiking neuromorphic processor in 180nm process technology with two hierarchy populations.
The proposed approach enables the developments of biomimetic neuromorphic system and various low-power, and low-latency inference processing applications.
arXiv Detail & Related papers (2022-01-19T09:26:34Z) - Deep Metric Learning with Locality Sensitive Angular Loss for
Self-Correcting Source Separation of Neural Spiking Signals [77.34726150561087]
We propose a methodology based on deep metric learning to address the need for automated post-hoc cleaning and robust separation filters.
We validate this method with an artificially corrupted label set based on source-separated high-density surface electromyography recordings.
This approach enables a neural network to learn to accurately decode neurophysiological time series using any imperfect method of labelling the signal.
arXiv Detail & Related papers (2021-10-13T21:51:56Z) - Artificial Neural Variability for Deep Learning: On Overfitting, Noise
Memorization, and Catastrophic Forgetting [135.0863818867184]
artificial neural variability (ANV) helps artificial neural networks learn some advantages from natural'' neural networks.
ANV plays as an implicit regularizer of the mutual information between the training data and the learned model.
It can effectively relieve overfitting, label noise memorization, and catastrophic forgetting at negligible costs.
arXiv Detail & Related papers (2020-11-12T06:06:33Z) - Closed-Loop Neural Interfaces with Embedded Machine Learning [12.977151652608047]
We review the recent developments in embedding machine learning in neural interfaces.
We present our optimized tree-based model for low-power and memory-efficient classification of neural signal in brain implants.
Using energy-aware learning and model compression, we show that the proposed oblique trees can outperform conventional machine learning models in applications such as seizure or tremor detection and motor decoding.
arXiv Detail & Related papers (2020-10-15T14:34:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.