Study of the influence of a biased database on the prediction of standard algorithms for selecting the best candidate for an interview
- URL: http://arxiv.org/abs/2505.02609v1
- Date: Mon, 05 May 2025 12:24:31 GMT
- Title: Study of the influence of a biased database on the prediction of standard algorithms for selecting the best candidate for an interview
- Authors: Shuyu Wang, Angélique Saillet, Philomène Le Gall, Alain Lacroux, Christelle Martin-Lacroux, Vincent Brault,
- Abstract summary: We generate data mimicking external (discrimination) and internal biases (self-censorship)<n>We study the influence of the anonymisation of files on the quality of predictions.
- Score: 0.4241054493737716
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Artificial intelligence is used at various stages of the recruitment process to automatically select the best candidate for a position, with companies guaranteeing unbiased recruitment. However, the algorithms used are either trained by humans or are based on learning from past experiences that were biased. In this article, we propose to generate data mimicking external (discrimination) and internal biases (self-censorship) in order to train five classic algorithms and to study the extent to which they do or do not find the best candidates according to objective criteria. In addition, we study the influence of the anonymisation of files on the quality of predictions.
Related papers
- A Principled Approach to Randomized Selection under Uncertainty: Applications to Peer Review and Grant Funding [68.43987626137512]
We propose a principled framework for randomized decision-making based on interval estimates of the quality of each item.<n>We introduce MERIT, an optimization-based method that maximizes the worst-case expected number of top candidates selected.<n>We prove that MERIT satisfies desirable axiomatic properties not guaranteed by existing approaches.
arXiv Detail & Related papers (2025-06-23T19:59:30Z) - Addressing Bias in LLMs: Strategies and Application to Fair AI-based Recruitment [49.81946749379338]
This work seeks to analyze the capacity of Transformers-based systems to learn demographic biases present in the data.<n>We propose a privacy-enhancing framework to reduce gender information from the learning pipeline as a way to mitigate biased behaviors in the final tools.
arXiv Detail & Related papers (2025-06-13T15:29:43Z) - CritiQ: Mining Data Quality Criteria from Human Preferences [70.35346554179036]
We introduce CritiQ, a novel data selection method that automatically mines criteria from human preferences for data quality.<n>CritiQ Flow employs a manager agent to evolve quality criteria and worker agents to make pairwise judgments.<n>We demonstrate the effectiveness of our method in the code, math, and logic domains.
arXiv Detail & Related papers (2025-02-26T16:33:41Z) - Human-Centric Multimodal Machine Learning: Recent Advances and Testbed
on AI-based Recruitment [66.91538273487379]
There is a certain consensus about the need to develop AI applications with a Human-Centric approach.
Human-Centric Machine Learning needs to be developed based on four main requirements: (i) utility and social good; (ii) privacy and data ownership; (iii) transparency and accountability; and (iv) fairness in AI-driven decision-making processes.
We study how current multimodal algorithms based on heterogeneous sources of information are affected by sensitive elements and inner biases in the data.
arXiv Detail & Related papers (2023-02-13T16:44:44Z) - Whole Page Unbiased Learning to Rank [59.52040055543542]
Unbiased Learning to Rank(ULTR) algorithms are proposed to learn an unbiased ranking model with biased click data.
We propose a Bias Agnostic whole-page unbiased Learning to rank algorithm, named BAL, to automatically find the user behavior model.
Experimental results on a real-world dataset verify the effectiveness of the BAL.
arXiv Detail & Related papers (2022-10-19T16:53:08Z) - Selection by Prediction with Conformal p-values [7.917044695538599]
We study screening procedures that aim to select candidates whose unobserved outcomes exceed user-specified values.
We develop a method that wraps around any prediction model to produce a subset of candidates while controlling the proportion of falsely selected units.
arXiv Detail & Related papers (2022-10-04T06:34:49Z) - Statistical discrimination in learning agents [64.78141757063142]
Statistical discrimination emerges in agent policies as a function of both the bias in the training population and of agent architecture.
We show that less discrimination emerges with agents that use recurrent neural networks, and when their training environment has less bias.
arXiv Detail & Related papers (2021-10-21T18:28:57Z) - Are Bias Mitigation Techniques for Deep Learning Effective? [24.84797949716142]
We introduce an improved evaluation protocol, sensible metrics, and a new dataset.
We evaluate seven state-of-the-art algorithms using the same network architecture.
We find that algorithms exploit hidden biases, are unable to scale to multiple forms of bias, and are highly sensitive to the choice of tuning set.
arXiv Detail & Related papers (2021-04-01T00:14:45Z) - Decision-makers Processing of AI Algorithmic Advice: Automation Bias
versus Selective Adherence [0.0]
Key concern is that human overreliance on algorithms introduces new biases in the human-algorithm interaction.
A second concern regards decision-makers inclination to selectively adopt algorithmic advice when it matches their pre-existing beliefs and stereotypes.
We assess these via two studies simulating the use of algorithmic advice in decisions pertaining to the employment of school teachers in the Netherlands.
Our findings of selective, biased adherence belie the promise of neutrality that has propelled algorithm use in the public sector.
arXiv Detail & Related papers (2021-03-03T13:10:50Z) - Does Fair Ranking Improve Minority Outcomes? Understanding the Interplay
of Human and Algorithmic Biases in Online Hiring [9.21721532941863]
We analyze various sources of gender biases in online hiring platforms, including the job context and inherent biases of the employers.
Our results demonstrate that while fair ranking algorithms generally improve the selection rates of underrepresented minorities, their effectiveness relies heavily on the job contexts and candidate profiles.
arXiv Detail & Related papers (2020-12-01T11:45:27Z) - Online Active Model Selection for Pre-trained Classifiers [72.84853880948894]
We design an online selective sampling approach that actively selects informative examples to label and outputs the best model with high probability at any round.
Our algorithm can be used for online prediction tasks for both adversarial and streams.
arXiv Detail & Related papers (2020-10-19T19:53:15Z) - Bias in Multimodal AI: Testbed for Fair Automatic Recruitment [73.85525896663371]
We study how current multimodal algorithms based on heterogeneous sources of information are affected by sensitive elements and inner biases in the data.
We train automatic recruitment algorithms using a set of multimodal synthetic profiles consciously scored with gender and racial biases.
Our methodology and results show how to generate fairer AI-based tools in general, and in particular fairer automated recruitment systems.
arXiv Detail & Related papers (2020-04-15T15:58:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.