MCCD: Multi-Agent Collaboration-based Compositional Diffusion for Complex Text-to-Image Generation
- URL: http://arxiv.org/abs/2505.02648v2
- Date: Tue, 06 May 2025 15:18:25 GMT
- Title: MCCD: Multi-Agent Collaboration-based Compositional Diffusion for Complex Text-to-Image Generation
- Authors: Mingcheng Li, Xiaolu Hou, Ziyang Liu, Dingkang Yang, Ziyun Qian, Jiawei Chen, Jinjie Wei, Yue Jiang, Qingyao Xu, Lihua Zhang,
- Abstract summary: Diffusion models have shown excellent performance in text-to-image generation.<n>We propose a Multi-agent Collaboration-based Compositional Diffusion for text-to-image generation for complex scenes.
- Score: 15.644911934279309
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diffusion models have shown excellent performance in text-to-image generation. Nevertheless, existing methods often suffer from performance bottlenecks when handling complex prompts that involve multiple objects, characteristics, and relations. Therefore, we propose a Multi-agent Collaboration-based Compositional Diffusion (MCCD) for text-to-image generation for complex scenes. Specifically, we design a multi-agent collaboration-based scene parsing module that generates an agent system comprising multiple agents with distinct tasks, utilizing MLLMs to extract various scene elements effectively. In addition, Hierarchical Compositional diffusion utilizes a Gaussian mask and filtering to refine bounding box regions and enhance objects through region enhancement, resulting in the accurate and high-fidelity generation of complex scenes. Comprehensive experiments demonstrate that our MCCD significantly improves the performance of the baseline models in a training-free manner, providing a substantial advantage in complex scene generation.
Related papers
- Marmot: Multi-Agent Reasoning for Multi-Object Self-Correcting in Improving Image-Text Alignment [55.74860093731475]
Marmot is a novel framework that employs Multi-Agent Reasoning for Multi-Object Self-Correcting.<n>We construct a multi-agent editing system featuring a decision-execution-verification mechanism.<n>Experiments demonstrate that Marmot significantly improves accuracy in object counting, attribute assignment, and spatial relationships.
arXiv Detail & Related papers (2025-04-10T16:54:28Z) - Multimodal-Aware Fusion Network for Referring Remote Sensing Image Segmentation [7.992331117310217]
Referring remote sensing image segmentation (RRSIS) is a novel visual task in remote sensing images segmentation.<n>We design a multimodal-aware fusion network (MAFN) to achieve fine-grained alignment and fusion between the two modalities.
arXiv Detail & Related papers (2025-03-14T08:31:21Z) - GenMAC: Compositional Text-to-Video Generation with Multi-Agent Collaboration [20.988801611785522]
We propose GenMAC, an iterative, multi-agent framework that enables compositional text-to-video generation.<n>The collaborative workflow includes three stages: Design, Generation, and Redesign.<n>To tackle diverse scenarios of compositional text-to-video generation, we design a self-routing mechanism to adaptively select the proper correction agent from a collection of correction agents each specialized for one scenario.
arXiv Detail & Related papers (2024-12-05T18:56:05Z) - Fusion from Decomposition: A Self-Supervised Approach for Image Fusion and Beyond [74.96466744512992]
The essence of image fusion is to integrate complementary information from source images.
DeFusion++ produces versatile fused representations that can enhance the quality of image fusion and the effectiveness of downstream high-level vision tasks.
arXiv Detail & Related papers (2024-10-16T06:28:49Z) - MaVEn: An Effective Multi-granularity Hybrid Visual Encoding Framework for Multimodal Large Language Model [49.931663904599205]
MaVEn is an innovative framework designed to enhance the capabilities of Multimodal Large Language Models (MLLMs) in multi-image reasoning.
We show that MaVEn significantly enhances MLLMs' understanding in complex multi-image scenarios, while also improving performance in single-image contexts.
arXiv Detail & Related papers (2024-08-22T11:57:16Z) - TIE: Revolutionizing Text-based Image Editing for Complex-Prompt Following and High-Fidelity Editing [23.51498634405422]
We present an innovative image editing framework that employs the robust Chain-of-Thought reasoning and localizing capabilities of multimodal large language models.
Our model exhibits an enhanced ability to understand complex prompts and generate corresponding images, while maintaining high fidelity and consistency in images before and after generation.
arXiv Detail & Related papers (2024-05-27T03:50:37Z) - Generalizable Entity Grounding via Assistance of Large Language Model [77.07759442298666]
We propose a novel approach to densely ground visual entities from a long caption.
We leverage a large multimodal model to extract semantic nouns, a class-a segmentation model to generate entity-level segmentation, and a multi-modal feature fusion module to associate each semantic noun with its corresponding segmentation mask.
arXiv Detail & Related papers (2024-02-04T16:06:05Z) - Divide and Conquer: Language Models can Plan and Self-Correct for
Compositional Text-to-Image Generation [72.6168579583414]
CompAgent is a training-free approach for compositional text-to-image generation with a large language model (LLM) agent as its core.
Our approach achieves more than 10% improvement on T2I-CompBench, a comprehensive benchmark for open-world compositional T2I generation.
arXiv Detail & Related papers (2024-01-28T16:18:39Z) - Mastering Text-to-Image Diffusion: Recaptioning, Planning, and Generating with Multimodal LLMs [77.86214400258473]
We propose a new training-free text-to-image generation/editing framework, namely Recaption, Plan and Generate (RPG)
RPG harnesses the powerful chain-of-thought reasoning ability of multimodal LLMs to enhance the compositionality of text-to-image diffusion models.
Our framework exhibits wide compatibility with various MLLM architectures.
arXiv Detail & Related papers (2024-01-22T06:16:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.