Multi-View Learning with Context-Guided Receptance for Image Denoising
- URL: http://arxiv.org/abs/2505.02705v1
- Date: Mon, 05 May 2025 14:57:43 GMT
- Title: Multi-View Learning with Context-Guided Receptance for Image Denoising
- Authors: Binghong Chen, Tingting Chai, Wei Jiang, Yuanrong Xu, Guanglu Zhou, Xiangqian Wu,
- Abstract summary: Image denoising is essential in low-level vision applications such as photography and automated driving.<n>Existing methods struggle with distinguishing complex noise patterns in real-world scenes and consume significant computational resources.<n>In this work, a Context-guided Receptance Weighted Key-Value (M) model is proposed, combining enhanced multi-view feature integration with efficient sequence modeling.<n>The model is validated on multiple real-world image denoising datasets, outperforming the existing state-of-the-art methods quantitatively and reducing inference time up to 40%.
- Score: 18.175992709188026
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Image denoising is essential in low-level vision applications such as photography and automated driving. Existing methods struggle with distinguishing complex noise patterns in real-world scenes and consume significant computational resources due to reliance on Transformer-based models. In this work, the Context-guided Receptance Weighted Key-Value (\M) model is proposed, combining enhanced multi-view feature integration with efficient sequence modeling. Our approach introduces the Context-guided Token Shift (CTS) paradigm, which effectively captures local spatial dependencies and enhance the model's ability to model real-world noise distributions. Additionally, the Frequency Mix (FMix) module extracting frequency-domain features is designed to isolate noise in high-frequency spectra, and is integrated with spatial representations through a multi-view learning process. To improve computational efficiency, the Bidirectional WKV (BiWKV) mechanism is adopted, enabling full pixel-sequence interaction with linear complexity while overcoming the causal selection constraints. The model is validated on multiple real-world image denoising datasets, outperforming the existing state-of-the-art methods quantitatively and reducing inference time up to 40\%. Qualitative results further demonstrate the ability of our model to restore fine details in various scenes.
Related papers
- Learning Multi-scale Spatial-frequency Features for Image Denoising [58.883244886588336]
We propose a novel multi-scale adaptive dual-domain network (MADNet) for image denoising.<n>We use image pyramid inputs to restore noise-free results from low-resolution images.<n>In order to realize the interaction of high-frequency and low-frequency information, we design an adaptive spatial-frequency learning unit.
arXiv Detail & Related papers (2025-06-19T13:28:09Z) - CTLformer: A Hybrid Denoising Model Combining Convolutional Layers and Self-Attention for Enhanced CT Image Reconstruction [0.21847754147782888]
Low-dose CT (LDCT) images are often accompanied by significant noise, which negatively impacts image quality and subsequent diagnostic accuracy.<n>This paper introduces an innovative model, CTLformer, which combines convolutional structures with transformer architecture.<n>Two key innovations are proposed: a multi-scale attention mechanism and a dynamic attention control mechanism.
arXiv Detail & Related papers (2025-05-18T02:37:50Z) - Global Semantic-Guided Sub-image Feature Weight Allocation in High-Resolution Large Vision-Language Models [50.98559225639266]
Sub-images with higher semantic relevance to the entire image encapsulate richer visual information for preserving the model's visual understanding ability.<n>Global Semantic-guided Weight Allocator (GSWA) module allocates weights to sub-images based on their relative information density.<n>SleighVL, a lightweight yet high-performing model, outperforms models with comparable parameters and remains competitive with larger models.
arXiv Detail & Related papers (2025-01-24T06:42:06Z) - Unifying Visual and Semantic Feature Spaces with Diffusion Models for Enhanced Cross-Modal Alignment [20.902935570581207]
We introduce a Multimodal Alignment and Reconstruction Network (MARNet) to enhance the model's resistance to visual noise.
MARNet includes a cross-modal diffusion reconstruction module for smoothly and stably blending information across different domains.
Experiments conducted on two benchmark datasets, Vireo-Food172 and Ingredient-101, demonstrate that MARNet effectively improves the quality of image information extracted by the model.
arXiv Detail & Related papers (2024-07-26T16:30:18Z) - Deep Learning CT Image Restoration using System Blur and Noise Models [2.2530496464901106]
We present a method that leverages both degraded image inputs and a characterization of the system blur and noise to combine modeling and deep learning approaches.
Results demonstrate the efficacy of providing a deep learning model with auxiliary inputs, representing system blur and noise characteristics.
arXiv Detail & Related papers (2024-07-20T21:17:35Z) - SeNM-VAE: Semi-Supervised Noise Modeling with Hierarchical Variational Autoencoder [13.453138169497903]
SeNM-VAE is a semi-supervised noise modeling method that leverages both paired and unpaired datasets to generate realistic degraded data.
We employ our method to generate paired training samples for real-world image denoising and super-resolution tasks.
Our approach excels in the quality of synthetic degraded images compared to other unpaired and paired noise modeling methods.
arXiv Detail & Related papers (2024-03-26T09:03:40Z) - Hybrid Convolutional and Attention Network for Hyperspectral Image Denoising [54.110544509099526]
Hyperspectral image (HSI) denoising is critical for the effective analysis and interpretation of hyperspectral data.
We propose a hybrid convolution and attention network (HCANet) to enhance HSI denoising.
Experimental results on mainstream HSI datasets demonstrate the rationality and effectiveness of the proposed HCANet.
arXiv Detail & Related papers (2024-03-15T07:18:43Z) - Blue noise for diffusion models [50.99852321110366]
We introduce a novel and general class of diffusion models taking correlated noise within and across images into account.
Our framework allows introducing correlation across images within a single mini-batch to improve gradient flow.
We perform both qualitative and quantitative evaluations on a variety of datasets using our method.
arXiv Detail & Related papers (2024-02-07T14:59:25Z) - Low-light Stereo Image Enhancement and De-noising in the Low-frequency
Information Enhanced Image Space [5.1569866461097185]
Methods are proposed to perform enhancement and de-noising simultaneously.
Low-frequency information enhanced module (IEM) is proposed to suppress noise and produce a new image space.
Cross-channel and spatial context information mining module (CSM) is proposed to encode long-range spatial dependencies.
An encoder-decoder structure is constructed, incorporating cross-view and cross-scale feature interactions.
arXiv Detail & Related papers (2024-01-15T15:03:32Z) - DiffiT: Diffusion Vision Transformers for Image Generation [88.08529836125399]
Vision Transformer (ViT) has demonstrated strong modeling capabilities and scalability, especially for recognition tasks.
We study the effectiveness of ViTs in diffusion-based generative learning and propose a new model denoted as Diffusion Vision Transformers (DiffiT)
DiffiT is surprisingly effective in generating high-fidelity images with significantly better parameter efficiency.
arXiv Detail & Related papers (2023-12-04T18:57:01Z) - Realistic Noise Synthesis with Diffusion Models [44.404059914652194]
Deep denoising models require extensive real-world training data, which is challenging to acquire.<n>We propose a novel Realistic Noise Synthesis Diffusor (RNSD) method using diffusion models to address these challenges.
arXiv Detail & Related papers (2023-05-23T12:56:01Z) - Learning Spatial and Spatio-Temporal Pixel Aggregations for Image and
Video Denoising [104.59305271099967]
We present a pixel aggregation network and learn the pixel sampling and averaging strategies for image denoising.
We develop a pixel aggregation network for video denoising to sample pixels across the spatial-temporal space.
Our method is able to solve the misalignment issues caused by large motion in dynamic scenes.
arXiv Detail & Related papers (2021-01-26T13:00:46Z) - Variational Denoising Network: Toward Blind Noise Modeling and Removal [59.36166491196973]
Blind image denoising is an important yet very challenging problem in computer vision.
We propose a new variational inference method, which integrates both noise estimation and image denoising.
arXiv Detail & Related papers (2019-08-29T15:54:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.