Graph Neural Network-Based Reinforcement Learning for Controlling Biological Networks: The GATTACA Framework
- URL: http://arxiv.org/abs/2505.02712v2
- Date: Fri, 30 May 2025 10:59:25 GMT
- Title: Graph Neural Network-Based Reinforcement Learning for Controlling Biological Networks: The GATTACA Framework
- Authors: Andrzej Mizera, Jakub Zarzycki,
- Abstract summary: We explore the use of deep reinforcement learning (DRL) to control network models of complex biological systems.<n>We formulate a novel control problem for Boolean network models under the asynchronous update mode in the context of cellular reprogramming.<n>To leverage the structure of biological systems, we incorporate graph neural networks with graph convolutions into the artificial neural network approximator for the action-value function learned by the DRL agent.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Cellular reprogramming, the artificial transformation of one cell type into another, has been attracting increasing research attention due to its therapeutic potential for complex diseases. However, discovering reprogramming strategies through classical wet-lab experiments is hindered by lengthy time commitments and high costs. In this study, we explore the use of deep reinforcement learning (DRL) to control Boolean network models of complex biological systems, such as gene regulatory networks and signalling pathway networks. We formulate a novel control problem for Boolean network models under the asynchronous update mode in the context of cellular reprogramming. To facilitate scalability, we consider our previously introduced concept of a pseudo-attractor and we improve our procedure for effective identification of pseudo-attractor states. Finally, we devise a computational framework to solve the control problem. To leverage the structure of biological systems, we incorporate graph neural networks with graph convolutions into the artificial neural network approximator for the action-value function learned by the DRL agent. Experiments on a number of large real-world biological networks from literature demonstrate the scalability and effectiveness of our approach.
Related papers
- A Basic Evaluation of Neural Networks Trained with the Error Diffusion Learning Algorithm [0.0]
Kaneko's Error Diffusion Learning Algorithm (EDLA)<n>A single global error signal diffuses throughout a network composed of paired excitatory-inhibitory sublayers.<n>Experiments indicate that EDLA networks can consistently achieve high accuracy.
arXiv Detail & Related papers (2025-04-21T02:41:17Z) - Counter-Current Learning: A Biologically Plausible Dual Network Approach for Deep Learning [32.122425860826525]
error backpropagation has faced criticism for its lack of biological plausibility.
We propose counter-current learning (CCL), a biologically plausible framework for credit assignment in neural networks.
Our work presents a direction for biologically inspired and plausible learning algorithms, offering an alternative mechanism of learning and adaptation in neural networks.
arXiv Detail & Related papers (2024-09-30T00:47:13Z) - Contrastive Learning in Memristor-based Neuromorphic Systems [55.11642177631929]
Spiking neural networks have become an important family of neuron-based models that sidestep many of the key limitations facing modern-day backpropagation-trained deep networks.
In this work, we design and investigate a proof-of-concept instantiation of contrastive-signal-dependent plasticity (CSDP), a neuromorphic form of forward-forward-based, backpropagation-free learning.
arXiv Detail & Related papers (2024-09-17T04:48:45Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
This work addresses the challenge of designing neurobiologically-motivated schemes for adjusting the synapses of spiking networks.
Our experimental simulations demonstrate a consistent advantage over other biologically-plausible approaches when training recurrent spiking networks.
arXiv Detail & Related papers (2023-03-30T02:40:28Z) - Biologically Plausible Training of Deep Neural Networks Using a Top-down
Credit Assignment Network [32.575847142016585]
Top-Down Credit Assignment Network (TDCA-network) is designed to train a bottom-up network using a Top-Down Credit Assignment Network (TDCA-network)
TDCA-network serves as a substitute for the conventional loss function and the back-propagation algorithm, widely used in neural network training.
The results indicate TDCA-network holds promising potential to train neural networks across diverse datasets.
arXiv Detail & Related papers (2022-08-01T07:14:37Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - Credit Assignment in Neural Networks through Deep Feedback Control [59.14935871979047]
Deep Feedback Control (DFC) is a new learning method that uses a feedback controller to drive a deep neural network to match a desired output target and whose control signal can be used for credit assignment.
The resulting learning rule is fully local in space and time and approximates Gauss-Newton optimization for a wide range of connectivity patterns.
To further underline its biological plausibility, we relate DFC to a multi-compartment model of cortical pyramidal neurons with a local voltage-dependent synaptic plasticity rule, consistent with recent theories of dendritic processing.
arXiv Detail & Related papers (2021-06-15T05:30:17Z) - Learning in Deep Neural Networks Using a Biologically Inspired Optimizer [5.144809478361604]
We propose a novel biologically inspired for artificial (ANNs) and spiking neural networks (SNNs)
GRAPES implements a weight-distribution dependent modulation of the error signal at each node of the neural network.
We show that this biologically inspired mechanism leads to a systematic improvement of the convergence rate of the network, and substantially improves classification accuracy of ANNs and SNNs.
arXiv Detail & Related papers (2021-04-23T13:50:30Z) - Learning Connectivity of Neural Networks from a Topological Perspective [80.35103711638548]
We propose a topological perspective to represent a network into a complete graph for analysis.
By assigning learnable parameters to the edges which reflect the magnitude of connections, the learning process can be performed in a differentiable manner.
This learning process is compatible with existing networks and owns adaptability to larger search spaces and different tasks.
arXiv Detail & Related papers (2020-08-19T04:53:31Z) - Recurrent Neural Network Learning of Performance and Intrinsic
Population Dynamics from Sparse Neural Data [77.92736596690297]
We introduce a novel training strategy that allows learning not only the input-output behavior of an RNN but also its internal network dynamics.
We test the proposed method by training an RNN to simultaneously reproduce internal dynamics and output signals of a physiologically-inspired neural model.
Remarkably, we show that the reproduction of the internal dynamics is successful even when the training algorithm relies on the activities of a small subset of neurons.
arXiv Detail & Related papers (2020-05-05T14:16:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.