Feature Staleness Aware Incremental Learning for CTR Prediction
- URL: http://arxiv.org/abs/2505.02844v1
- Date: Tue, 29 Apr 2025 09:05:47 GMT
- Title: Feature Staleness Aware Incremental Learning for CTR Prediction
- Authors: Zhikai Wang, Yanyan Shen, Zibin Zhang, Kangyi Lin,
- Abstract summary: Feature embeddings of a CTR prediction model often get stale when the corresponding features do not appear in current incremental data.<n>We propose a Feature Staleness Aware Incremental Learning method for CTR prediction (FeSAIL) which adaptively replays samples containing stale features.<n>FeSAIL outperforms various state-of-the-art methods on four benchmark datasets.
- Score: 18.810404607032297
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Click-through Rate (CTR) prediction in real-world recommender systems often deals with billions of user interactions every day. To improve the training efficiency, it is common to update the CTR prediction model incrementally using the new incremental data and a subset of historical data. However, the feature embeddings of a CTR prediction model often get stale when the corresponding features do not appear in current incremental data. In the next period, the model would have a performance degradation on samples containing stale features, which we call the feature staleness problem. To mitigate this problem, we propose a Feature Staleness Aware Incremental Learning method for CTR prediction (FeSAIL) which adaptively replays samples containing stale features. We first introduce a staleness aware sampling algorithm (SAS) to sample a fixed number of stale samples with high sampling efficiency. We then introduce a staleness aware regularization mechanism (SAR) for a fine-grained control of the feature embedding updating. We instantiate FeSAIL with a general deep learning-based CTR prediction model and the experimental results demonstrate FeSAIL outperforms various state-of-the-art methods on four benchmark datasets.
Related papers
- RAT: Retrieval-Augmented Transformer for Click-Through Rate Prediction [68.34355552090103]
This paper develops a Retrieval-Augmented Transformer (RAT), aiming to acquire fine-grained feature interactions within and across samples.
We then build Transformer layers with cascaded attention to capture both intra- and cross-sample feature interactions.
Experiments on real-world datasets substantiate the effectiveness of RAT and suggest its advantage in long-tail scenarios.
arXiv Detail & Related papers (2024-04-02T19:14:23Z) - Helen: Optimizing CTR Prediction Models with Frequency-wise Hessian
Eigenvalue Regularization [22.964109377128523]
Click-Through Rate (CTR) prediction holds paramount significance in online advertising and recommendation scenarios.
Despite the proliferation of recent CTR prediction models, the improvements in performance have remained limited.
arXiv Detail & Related papers (2024-02-23T15:00:46Z) - Enhancing Consistency and Mitigating Bias: A Data Replay Approach for Incremental Learning [93.90047628101155]
Deep learning systems are prone to catastrophic forgetting when learning from a sequence of tasks.<n>To address this, some methods propose replaying data from previous tasks during new task learning.<n>However, it is not expected in practice due to memory constraints and data privacy issues.
arXiv Detail & Related papers (2024-01-12T12:51:12Z) - TRIAGE: Characterizing and auditing training data for improved
regression [80.11415390605215]
We introduce TRIAGE, a novel data characterization framework tailored to regression tasks and compatible with a broad class of regressors.
TRIAGE utilizes conformal predictive distributions to provide a model-agnostic scoring method, the TRIAGE score.
We show that TRIAGE's characterization is consistent and highlight its utility to improve performance via data sculpting/filtering, in multiple regression settings.
arXiv Detail & Related papers (2023-10-29T10:31:59Z) - Dynamic Residual Classifier for Class Incremental Learning [4.02487511510606]
With imbalanced sample numbers between old and new classes, the learning can be biased.
Existing CIL methods exploit the longtailed (LT) recognition techniques, e.g., the adjusted losses and the data re-sampling methods.
A novel Dynamic Residual adaptation (DRC) is proposed to handle this challenging scenario.
arXiv Detail & Related papers (2023-08-25T11:07:11Z) - MAP: A Model-agnostic Pretraining Framework for Click-through Rate
Prediction [39.48740397029264]
We propose a Model-agnostic pretraining (MAP) framework that applies feature corruption and recovery on multi-field categorical data.
We derive two practical algorithms: masked feature prediction (RFD) and replaced feature detection (RFD)
arXiv Detail & Related papers (2023-08-03T12:55:55Z) - Revisiting DETR Pre-training for Object Detection [24.372444866927538]
We investigate the shortcomings of DETReg in enhancing the performance of robust DETR-based models under full data conditions.
We employ an optimized approach named Simple Self-training which leads to marked enhancements through the combination of an improved box predictor and the Objects$365$ benchmark.
The culmination of these endeavors results in a remarkable AP score of $59.3%$ on the COCO val set, outperforming $mathcalH$-Deformable-DETR + Swin-L without pre-training by $1.4%$.
arXiv Detail & Related papers (2023-08-02T17:39:30Z) - Consensus-Adaptive RANSAC [104.87576373187426]
We propose a new RANSAC framework that learns to explore the parameter space by considering the residuals seen so far via a novel attention layer.
The attention mechanism operates on a batch of point-to-model residuals, and updates a per-point estimation state to take into account the consensus found through a lightweight one-step transformer.
arXiv Detail & Related papers (2023-07-26T08:25:46Z) - Always Strengthen Your Strengths: A Drift-Aware Incremental Learning
Framework for CTR Prediction [4.909628097144909]
Click-through rate (CTR) prediction is of great importance in recommendation systems and online advertising platforms.
Streaming data has the characteristic that the underlying distribution drifts over time and may recur.
We design a novel drift-aware incremental learning framework based on ensemble learning to address catastrophic forgetting in CTR prediction.
arXiv Detail & Related papers (2023-04-17T05:45:18Z) - MRCLens: an MRC Dataset Bias Detection Toolkit [82.44296974850639]
We introduce MRCLens, a toolkit that detects whether biases exist before users train the full model.
For the convenience of introducing the toolkit, we also provide a categorization of common biases in MRC.
arXiv Detail & Related papers (2022-07-18T21:05:39Z) - Iterative Boosting Deep Neural Networks for Predicting Click-Through
Rate [15.90144113403866]
The click-through rate (CTR) reflects the ratio of clicks on a specific item to its total number of views.
XdBoost is an iterative three-stage neural network model influenced by the traditional machine learning boosting mechanism.
arXiv Detail & Related papers (2020-07-26T09:41:16Z) - Evaluating Prediction-Time Batch Normalization for Robustness under
Covariate Shift [81.74795324629712]
We call prediction-time batch normalization, which significantly improves model accuracy and calibration under covariate shift.
We show that prediction-time batch normalization provides complementary benefits to existing state-of-the-art approaches for improving robustness.
The method has mixed results when used alongside pre-training, and does not seem to perform as well under more natural types of dataset shift.
arXiv Detail & Related papers (2020-06-19T05:08:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.