Harnessing Structured Knowledge: A Concept Map-Based Approach for High-Quality Multiple Choice Question Generation with Effective Distractors
- URL: http://arxiv.org/abs/2505.02850v1
- Date: Fri, 02 May 2025 06:36:06 GMT
- Title: Harnessing Structured Knowledge: A Concept Map-Based Approach for High-Quality Multiple Choice Question Generation with Effective Distractors
- Authors: Nicy Scaria, Silvester John Joseph Kennedy, Diksha Seth, Ananya Thakur, Deepak Subramani,
- Abstract summary: This paper presents a hierarchical concept map-based framework that provides structured knowledge to guide LLMs in generating MCQs with distractors.<n>We evaluate our framework against two baseline approaches: a base LLM and a RAG-based generation.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Generating high-quality MCQs, especially those targeting diverse cognitive levels and incorporating common misconceptions into distractor design, is time-consuming and expertise-intensive, making manual creation impractical at scale. Current automated approaches typically generate questions at lower cognitive levels and fail to incorporate domain-specific misconceptions. This paper presents a hierarchical concept map-based framework that provides structured knowledge to guide LLMs in generating MCQs with distractors. We chose high-school physics as our test domain and began by developing a hierarchical concept map covering major Physics topics and their interconnections with an efficient database design. Next, through an automated pipeline, topic-relevant sections of these concept maps are retrieved to serve as a structured context for the LLM to generate questions and distractors that specifically target common misconceptions. Lastly, an automated validation is completed to ensure that the generated MCQs meet the requirements provided. We evaluate our framework against two baseline approaches: a base LLM and a RAG-based generation. We conducted expert evaluations and student assessments of the generated MCQs. Expert evaluation shows that our method significantly outperforms the baseline approaches, achieving a success rate of 75.20% in meeting all quality criteria compared to approximately 37% for both baseline methods. Student assessment data reveal that our concept map-driven approach achieved a significantly lower guess success rate of 28.05% compared to 37.10% for the baselines, indicating a more effective assessment of conceptual understanding. The results demonstrate that our concept map-based approach enables robust assessment across cognitive levels and instant identification of conceptual gaps, facilitating faster feedback loops and targeted interventions at scale.
Related papers
- A Survey of Frontiers in LLM Reasoning: Inference Scaling, Learning to Reason, and Agentic Systems [93.8285345915925]
Reasoning is a fundamental cognitive process that enables logical inference, problem-solving, and decision-making.<n>With the rapid advancement of large language models (LLMs), reasoning has emerged as a key capability that distinguishes advanced AI systems.<n>We categorize existing methods along two dimensions: (1) Regimes, which define the stage at which reasoning is achieved; and (2) Architectures, which determine the components involved in the reasoning process.
arXiv Detail & Related papers (2025-04-12T01:27:49Z) - How Metacognitive Architectures Remember Their Own Thoughts: A Systematic Review [16.35521789216079]
Metacognition has gained significant attention for its potential to enhance autonomy and adaptability of artificial agents.<n>Existing overviews remain at a conceptual level that is undiscerning to the underlying algorithms, representations, and their respective success.
arXiv Detail & Related papers (2025-02-28T08:48:41Z) - Construction and Preliminary Validation of a Dynamic Programming Concept Inventory [0.7389633345370871]
Concept inventories are standardized assessments that evaluate student understanding of key concepts within academic disciplines.
While prevalent across STEM fields, their development lags for advanced computer science topics like dynamic programming (DP)
We detail the iterative process used to formulate multiple-choice questions targeting known student misconceptions about DP concepts identified through prior research studies.
We conducted a preliminary psychometric validation by administering the D PCI to 172 undergraduate CS students finding our questions to be of appropriate difficulty and effectively discriminating between differing levels of student understanding.
arXiv Detail & Related papers (2024-11-22T01:01:43Z) - Automated Knowledge Concept Annotation and Question Representation Learning for Knowledge Tracing [59.480951050911436]
We present KCQRL, a framework for automated knowledge concept annotation and question representation learning.<n>We demonstrate the effectiveness of KCQRL across 15 KT algorithms on two large real-world Math learning datasets.
arXiv Detail & Related papers (2024-10-02T16:37:19Z) - MR-Ben: A Meta-Reasoning Benchmark for Evaluating System-2 Thinking in LLMs [55.20845457594977]
Large language models (LLMs) have shown increasing capability in problem-solving and decision-making.<n>We present a process-based benchmark MR-Ben that demands a meta-reasoning skill.<n>Our meta-reasoning paradigm is especially suited for system-2 slow thinking.
arXiv Detail & Related papers (2024-06-20T03:50:23Z) - HGOT: Hierarchical Graph of Thoughts for Retrieval-Augmented In-Context Learning in Factuality Evaluation [20.178644251662316]
We introduce the hierarchical graph of thoughts (HGOT) to enhance the retrieval of pertinent passages during in-context learning.
The framework employs the divide-and-conquer strategy to break down complex queries into manageable sub-queries.
It refines self-consistency majority voting for answer selection, which incorporates the recently proposed citation recall and precision metrics.
arXiv Detail & Related papers (2024-02-14T18:41:19Z) - Fairness meets Cross-Domain Learning: a new perspective on Models and
Metrics [80.07271410743806]
We study the relationship between cross-domain learning (CD) and model fairness.
We introduce a benchmark on face and medical images spanning several demographic groups as well as classification and localization tasks.
Our study covers 14 CD approaches alongside three state-of-the-art fairness algorithms and shows how the former can outperform the latter.
arXiv Detail & Related papers (2023-03-25T09:34:05Z) - Modelling Assessment Rubrics through Bayesian Networks: a Pragmatic Approach [40.06500618820166]
This paper presents an approach to deriving a learner model directly from an assessment rubric.
We illustrate how the approach can be applied to automatize the human assessment of an activity developed for testing computational thinking skills.
arXiv Detail & Related papers (2022-09-07T10:09:12Z) - CogME: A Cognition-Inspired Multi-Dimensional Evaluation Metric for Story Understanding [19.113385429326808]
We introduce CogME, a cognition-inspired, multi-dimensional evaluation metric designed for AI models focusing on story understanding.
We argue the need for metrics based on understanding the nature of tasks and designed to align closely with human cognitive processes.
This approach provides insights beyond traditional overall scores and paves the way for more sophisticated AI development targeting higher cognitive functions.
arXiv Detail & Related papers (2021-07-21T02:33:37Z) - Cross Learning in Deep Q-Networks [82.20059754270302]
We propose a novel cross Q-learning algorithm, aim at alleviating the well-known overestimation problem in value-based reinforcement learning methods.
Our algorithm builds on double Q-learning, by maintaining a set of parallel models and estimate the Q-value based on a randomly selected network.
arXiv Detail & Related papers (2020-09-29T04:58:17Z) - Concept Learners for Few-Shot Learning [76.08585517480807]
We propose COMET, a meta-learning method that improves generalization ability by learning to learn along human-interpretable concept dimensions.
We evaluate our model on few-shot tasks from diverse domains, including fine-grained image classification, document categorization and cell type annotation.
arXiv Detail & Related papers (2020-07-14T22:04:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.