論文の概要: When Your Own Output Becomes Your Training Data: Noise-to-Meaning Loops and a Formal RSI Trigger
- arxiv url: http://arxiv.org/abs/2505.02888v1
- Date: Mon, 05 May 2025 17:03:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-07 18:50:11.067599
- Title: When Your Own Output Becomes Your Training Data: Noise-to-Meaning Loops and a Formal RSI Trigger
- Title(参考訳): 自分の出力がトレーニングデータになるとき:ノイズと計測のループと形式的なRSIトリガー
- Authors: Rintaro Ando,
- Abstract要約: N2M-RSI(Nono-to-Meaning Recursive Self-Improvement)
我々は、AIエージェントが入力として出力を返却し、明示的な情報統合しきい値を超えた場合、その内部複雑さは、私たちの仮定に縛られることなく増大することを示す最小の形式モデルを示す。
安全性上の理由から、システム固有の実装の詳細を省略し、Appendix Cでモデルに依存しない短いプロトタイプのみをリリースする。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We present Noise-to-Meaning Recursive Self-Improvement (N2M-RSI), a minimal formal model showing that once an AI agent feeds its own outputs back as inputs and crosses an explicit information-integration threshold, its internal complexity will grow without bound under our assumptions. The framework unifies earlier ideas on self-prompting large language models, G\"odelian self-reference, and AutoML, yet remains implementation-agnostic. The model furthermore scales naturally to interacting swarms of agents, hinting at super-linear effects once communication among instances is permitted. For safety reasons, we omit system-specific implementation details and release only a brief, model-agnostic toy prototype in Appendix C.
- Abstract(参考訳): 我々は、AIエージェントが入力として出力を返送し、明示的な情報統合しきい値を超えた場合、その内部複雑さは、私たちの仮定に縛られずに増大することを示す最小の形式モデルであるN2M-RSI(Noss-to-Meaning Recursive Self-Improvement)を提案する。
このフレームワークは、大規模な言語モデル、G\ "odelian self-reference"、AutoMLに関する以前のアイデアを統一するが、実装に依存しないままである。
さらに、このモデルは相互作用するエージェントの群に自然にスケールし、インスタンス間の通信が許可されると、超線形効果を示唆する。
安全性上の理由から、システム固有の実装の詳細を省略し、Appendix Cでモデルに依存しない短いプロトタイプのみをリリースする。
関連論文リスト
- Generalising from Self-Produced Data: Model Training Beyond Human Constraints [0.0]
本稿では,AIモデルが新たな知識を自律的に生成し,検証する新しい枠組みを提案する。
このアプローチの中心は、人間のベンチマークを必要とせずに学習をガイドする、無制限で使い捨ての数値報酬である。
論文 参考訳(メタデータ) (2025-04-07T03:48:02Z) - Collaborative Instance Object Navigation: Leveraging Uncertainty-Awareness to Minimize Human-Agent Dialogues [54.81155589931697]
協調インスタンスオブジェクトナビゲーション(CoIN)は、エージェントがターゲットインスタンスに関する不確実性を積極的に解決する新しいタスク設定である。
未認識者に対するエージェント・ユーザインタラクション(AIUTA)の新たな学習自由化手法を提案する。
まず、オブジェクト検出時に、セルフクエチオナーモデルがエージェント内で自己対話を開始し、完全かつ正確な観察記述を得る。
インタラクショントリガーモジュールは、人間に質問するか、継続するか、ナビゲーションを停止するかを決定する。
論文 参考訳(メタデータ) (2024-12-02T08:16:38Z) - Steering Masked Discrete Diffusion Models via Discrete Denoising Posterior Prediction [88.65168366064061]
本稿では,確率論的推論の課題として,事前学習したMDMを操る作業を行う新しいフレームワークであるDDPPを紹介する。
私たちのフレームワークは、3つの新しい目標のファミリーにつながります。
Wet-lab Validation(ウェット・ラブ・バリデーション)を用いて,報酬最適化タンパク質配列の過渡的発現を観察する。
論文 参考訳(メタデータ) (2024-10-10T17:18:30Z) - PRoDeliberation: Parallel Robust Deliberation for End-to-End Spoken Language Understanding [44.77985942208969]
PRoDeliberationは、コネクショニストの時間分類に基づくデコード戦略を活用する新しい手法であり、堅牢な非自己回帰的デリベレーションモデルをトレーニングするための認知的目標である。
PRoDeliberationは,自動音声認識(ASR)の誤り書き起こしを補正する能力を維持しつつ,並列デコーディングの遅延低減(自己回帰モデルよりも2~10倍改善)を実現していることを示す。
論文 参考訳(メタデータ) (2024-06-12T02:46:17Z) - LLMs can learn self-restraint through iterative self-reflection [57.26854891567574]
大規模言語モデル(LLM)は、特定のトピックに関連する知識と不確実性に基づいて、その振る舞いを動的に適応できなければならない。
この適応的行動は、私たちが自己規制と呼ぶもので、教えるのは簡単ではない。
モデルが信頼している場合にのみ応答を生成できるようにするユーティリティ関数を考案する。
論文 参考訳(メタデータ) (2024-05-15T13:35:43Z) - It's Never Too Late: Fusing Acoustic Information into Large Language
Models for Automatic Speech Recognition [70.77292069313154]
大規模言語モデル(LLM)は、自動音声認識(ASR)出力の上の生成誤り訂正(GER)に成功することができる。
本研究では,不確実性認識ダイナミックフュージョン (UADF) と呼ばれる新しい遅延融合解によって予測された転写を生成する前に,音響情報を注入することにより,そのような制限を克服することを目的とする。
論文 参考訳(メタデータ) (2024-02-08T07:21:45Z) - A Driving Behavior Recognition Model with Bi-LSTM and Multi-Scale CNN [59.57221522897815]
運転行動認識のための軌道情報に基づくニューラルネットワークモデルを提案する。
提案手法を公開BLVDデータセット上で評価し,満足な性能を実現する。
論文 参考訳(メタデータ) (2021-03-01T06:47:29Z) - Efficiently Fusing Pretrained Acoustic and Linguistic Encoders for
Low-resource Speech Recognition [9.732767611907068]
本研究では,前訓練音響エンコーダ(wav2vec2.0)と前訓練言語エンコーダ(bert)をエンドツーエンドasrモデルに融合する。
本モデルは他のエンドツーエンドモデルに比べてcallhomeコーパスの認識性能が(15時間)向上する。
論文 参考訳(メタデータ) (2021-01-17T16:12:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。