Cognitio Emergens: Agency, Dimensions, and Dynamics in Human-AI Knowledge Co-Creation
- URL: http://arxiv.org/abs/2505.03105v1
- Date: Tue, 06 May 2025 01:49:44 GMT
- Title: Cognitio Emergens: Agency, Dimensions, and Dynamics in Human-AI Knowledge Co-Creation
- Authors: Xule Lin,
- Abstract summary: This article introduces Cognitio Emergens (CE), a framework addressing limitations in existing models.<n>CE integrates three components addressing these limitations.<n>CE reveals how knowledge co-creation emerges through continuous negotiation of roles, values, and organizational structures.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Scientific knowledge creation is fundamentally transforming as humans and AI systems evolve beyond tool-user relationships into co-evolutionary epistemic partnerships. When AlphaFold revolutionized protein structure prediction, researchers described engaging with an epistemic partner that reshaped how they conceptualized fundamental relationships. This article introduces Cognitio Emergens (CE), a framework addressing critical limitations in existing models that focus on static roles or narrow metrics while failing to capture how scientific understanding emerges through recursive human-AI interaction over time. CE integrates three components addressing these limitations: Agency Configurations describing how authority distributes between humans and AI (Directed, Contributory, Partnership), with partnerships dynamically oscillating between configurations rather than following linear progression; Epistemic Dimensions capturing six specific capabilities emerging through collaboration across Discovery, Integration, and Projection axes, creating distinctive "capability signatures" that guide development; and Partnership Dynamics identifying forces shaping how these relationships evolve, particularly the risk of epistemic alienation where researchers lose interpretive control over knowledge they formally endorse. Drawing from autopoiesis theory, social systems theory, and organizational modularity, CE reveals how knowledge co-creation emerges through continuous negotiation of roles, values, and organizational structures. By reconceptualizing human-AI scientific collaboration as fundamentally co-evolutionary, CE offers a balanced perspective that neither uncritically celebrates nor unnecessarily fears AI's evolving role, instead providing conceptual tools for cultivating partnerships that maintain meaningful human participation while enabling transformative scientific breakthroughs.
Related papers
- Classifying Epistemic Relationships in Human-AI Interaction: An Exploratory Approach [0.6906005491572401]
This study examines how users form relationships with AI-how they assess, trust, and collaborate with it in research and teaching contexts.<n>Based on 31 interviews with academics across disciplines, we developed a five-part codebook and identified five relationship types.
arXiv Detail & Related papers (2025-08-02T23:41:28Z) - A Survey of Self-Evolving Agents: On Path to Artificial Super Intelligence [87.08051686357206]
Large Language Models (LLMs) have demonstrated strong capabilities but remain fundamentally static.<n>As LLMs are increasingly deployed in open-ended, interactive environments, this static nature has become a critical bottleneck.<n>This survey provides the first systematic and comprehensive review of self-evolving agents.
arXiv Detail & Related papers (2025-07-28T17:59:05Z) - When Models Know More Than They Can Explain: Quantifying Knowledge Transfer in Human-AI Collaboration [79.69935257008467]
We introduce Knowledge Integration and Transfer Evaluation (KITE), a conceptual and experimental framework for Human-AI knowledge transfer capabilities.<n>We conduct the first large-scale human study (N=118) explicitly designed to measure it.<n>In our two-phase setup, humans first ideate with an AI on problem-solving strategies, then independently implement solutions, isolating model explanations' influence on human understanding.
arXiv Detail & Related papers (2025-06-05T20:48:16Z) - Continuum-Interaction-Driven Intelligence: Human-Aligned Neural Architecture via Crystallized Reasoning and Fluid Generation [1.5800607910450124]
Current AI systems face challenges including hallucination, unpredictability, and misalignment with human decision-making.<n>This study proposes a dual-channel intelligent architecture that integrates probabilistic generation (LLMs) with white-box procedural reasoning (chain-of-thought) to construct interpretable, continuously learnable, and human-aligned AI systems.
arXiv Detail & Related papers (2025-04-12T18:15:49Z) - Replicating Human Social Perception in Generative AI: Evaluating the Valence-Dominance Model [0.13654846342364302]
We show that multimodal generative AI systems can replicate key aspects of human social perception.<n>Findings raise important questions about their implications for AI-driven decision-making and human-AI interactions.
arXiv Detail & Related papers (2025-03-05T17:35:18Z) - Cognitive AI framework: advances in the simulation of human thought [0.0]
The Human Cognitive Simulation Framework represents a significant advancement in integrating human cognitive capabilities into artificial intelligence systems.<n>By merging short-term memory (conversation context), long-term memory (interaction context), advanced cognitive processing, and efficient knowledge management, it ensures contextual coherence and persistent data storage.<n>This framework lays the foundation for future research in continuous learning algorithms, sustainability, and multimodal adaptability, positioning Cognitive AI as a transformative model in emerging fields.
arXiv Detail & Related papers (2025-02-06T17:43:35Z) - Elucidation of the Concept of Consciousness from the Theory of Non-Human Communication Agents [0.0]
This article focuses on elucidating the concept of consciousness from a relational and post-phenomenological theory of non-human communication agents (ANHC)<n>Building on interactions with non-human cognitive agents, among other factors, the explainability of sociotechnical systems challenges the common sense of modern philosophy and science.<n>The aim is to contribute to a necessary discussion for designing new frameworks of understanding that pave the way toward an ethical and pragmatic approach to addressing contemporary challenges in the design, regulation, and interaction with ANHC.
arXiv Detail & Related papers (2025-02-05T13:58:23Z) - Incentivized Symbiosis: A Paradigm for Human-Agent Coevolution [0.0]
Evolutionary game theory offers a lens to understand the structures and incentives that enable cooperation to be a successful strategy.<n>The convergence of human-agent teaming, contract theory, and decentralized frameworks like Web3 offers a foundation for fostering cooperation.<n>We conceptualize Incentivized Symbiosis as a social contract between humans and AI, inspired by Web3 principles and encoded in blockchain technology.
arXiv Detail & Related papers (2024-12-08T20:23:48Z) - Aligning Generalisation Between Humans and Machines [74.120848518198]
AI technology can support humans in scientific discovery and forming decisions, but may also disrupt democracies and target individuals.<n>The responsible use of AI and its participation in human-AI teams increasingly shows the need for AI alignment.<n>A crucial yet often overlooked aspect of these interactions is the different ways in which humans and machines generalise.
arXiv Detail & Related papers (2024-11-23T18:36:07Z) - Converging Paradigms: The Synergy of Symbolic and Connectionist AI in LLM-Empowered Autonomous Agents [55.63497537202751]
Article explores the convergence of connectionist and symbolic artificial intelligence (AI)
Traditionally, connectionist AI focuses on neural networks, while symbolic AI emphasizes symbolic representation and logic.
Recent advancements in large language models (LLMs) highlight the potential of connectionist architectures in handling human language as a form of symbols.
arXiv Detail & Related papers (2024-07-11T14:00:53Z) - Human-AI Coevolution [48.74579595505374]
Coevolution AI is a process in which humans and AI algorithms continuously influence each other.
This paper introduces Coevolution AI as the cornerstone for a new field of study at the intersection between AI and complexity science.
arXiv Detail & Related papers (2023-06-23T18:10:54Z) - Acquiring and Modelling Abstract Commonsense Knowledge via Conceptualization [49.00409552570441]
We study the role of conceptualization in commonsense reasoning, and formulate a framework to replicate human conceptual induction.
We apply the framework to ATOMIC, a large-scale human-annotated CKG, aided by the taxonomy Probase.
arXiv Detail & Related papers (2022-06-03T12:24:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.